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ABSTRACT 
 
The regulation of linear growth is a complex and ‘intriguing’ process that has the 
growth plate cartilage as its final target. Growth plate is a specialized cartilage localized 
in the end of the long bones between the epiphyseal and metaphyseal bone. It consists 
of 3 layers (resting, proliferative and hypertrophic zones) with distinct cellular 
morphology and function, where the continuous process of endochondral ossification 
takes place. This process is tightly regulated and relies on the interaction between 
systemic and local action of several hormones and growth factors.  Although height is a 
true multigenetic trait and much has been discovered on the control of skeletal growth; 
there is still a long way to go to understand the intrinsic control of growth plate 
chondrogenesis that regulates postnatal bone growth and determines individual height.  

In order to explore the molecular mechanisms implicated in the spatial and temporal 
control of growth plate, we first used microdissection of postnatal rat growth plate 
combined with microarray and real-time PCR analyses. Bioinformatic analysis of 
global gene expression implicated novel biological functions, molecular pathways, 
transcription factors and potential markers for spatially-associated chondrocyte 
differentiation and temporally-associated growth plate senescence (Paper I).  

We next explored some of these molecular pathways implicated in the control of 
postnatal chondrogenesis. The Wnt/β-catenin signaling was one of the most strongly 
implicated pathways in the developmental program of growth plate senescence 
revealed in our microarray analysis. We found that six Wnts were expressed in growth 
plate chondrocytes, of which Wnts-2b, -4 and -10b act through the canonical β-catenin 
pathway and Wnts -5a, -5b and -11 acts through the non-canonical Calcium pathway. 
We observed that all the expressed Wnts exhibited a similar pattern of expression in the 
growth plate, showing low expression in resting zone, increasing expression as the 
chondrocytes differentiated into the proliferative zone, and then decreasing expression 
as the chondrocytes underwent hypertrophic differentiation. In addition, all identified 
Wnts persisted at similar levels with age. Altogether, our findings suggest that Wnts 
modulate growth plate senescence and chondrocyte hypertrophy through the canonical 
β-catenin and non-canonical calcium pathways (Paper II). We then, characterized the 
expression profile of a growth-regulated network of imprinted genes implicated in 
embryonic growth of soft tissues. We found that the expression pattern of the network 
is modified in growth plate cartilage compared both to soft tissues and to bone. In 
particular, developmental changes in the expression of growth-promoting genes (Mest, 
Dlk1, Gtl2), and growth-inhibitory genes (Cdnk1c and Grb10) may contribute to the 
decline in longitudinal bone growth that occurs with age (Paper III). In addition, by 
using distinct growth inhibiting conditions, we found functional and structural delay in 
growth plate senescence markers that indicate that growth plate senescence is not 
simply a function of time ‘per se’ but rather of growth, and that delayed senescence 
may be a general consequence of growth inhibition (Paper IV).  

We also identified unique microRNAs (miRNAs) that are preferentially expressed and 
age-regulated in growth plate chondrocytes. The role of these miRNAs in growth plate 
chondrogenesis were tested using in vitro system for culture and transfection of murine 
resting zone chondrocytes, which enabled us to study the role of miRNAs in primary 
chondrocytes phenotype, simulating in vivo conditions more closely. These findings 
suggest that miRNAs contribute to the developmentally regulated decline in 
longitudinal bone growth through regulation of chondrocyte proliferation and 
apoptosis. Altogether, our findings contribute to understand the molecular regulation of 
growth plate chondrocytes and its implications to postnatal linear growth (Paper V). 
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1 INTRODUCTION 

 

1.1 Longitudinal Bone Growth 

Growth is one of the most fundamental tasks of childhood development and growth 

assessment is an important screening tool in the pediatric health evaluation. Although 

tall stature is also a concern, especially among teenage girls, short stature is a more 

common cause of concern and one of the main causes of referral to the pediatric 

endocrinologist. Attaining the potential height for every child may be accompanied by 

parental expectation and anxiety, and lead to emotional issues in the children and 

adolescents as well. However, “physiological” factors need to be considered when 

evaluating a child’s growth, such as: inherited growth potential (parental height), 

“physiological age” (pubertal status and bone age), and “normal” variations in 

nutritional status.  

Human height is a quantitative trait with a clear pattern of family resemblance, 

consistent with a polygenic model of inheritance (Galton 1886; Visscher 2008). 

Recently, three genome-wide association and genetic linkage studies with a combined 

sample size of more than 60,000 individuals have tried to explain how much adult 

height is due to the polygenic model, searching for loci (presumable genes) that might 

contribute to the variation in adult height and at what extent. However, the 54 detected 

loci can only explain a small proportion (3-5%) of height variation among the 

population, with each locus having a small effect size of 0.3-0.6 cm (Gudbjartsson, 

Walters et al. 2008; Lettre, Jackson et al. 2008; Weedon, Lango et al. 2008).  The 

results of these studies suggest that height is a true multigenetic trait and that future 

studies with larger cohorts will detect many more genes with even smaller effect size. It 

is noteworthy that some of these studies found expected as well as unexpected genes, 

and implicates the role of micro-RNAs (miRNAs), such as let7 family, whose target 

genes (e.g. IGF1, IGF1R and COL1A2) are known as important regulators of human 

stature (Lettre, Jackson et al. 2008). However, there is still a long way to go by using 

this strategy and much more knowledge is required to understand the role of these 

genes and mechanisms of interaction between them in order to determine individual 

height. Since there are so many genes involved and very small size effects for each one 

of them, it seems unlikely that this approach will reach practical clinical application. 
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The regulation of linear growth is a complex and ‘intriguing’ process that has the 

growth plate cartilage as its final target, and relies on the interaction between systemic 

and local action of several hormones and growth factors. Throughout life, longitudinal 

growth constitutes a self-limited and decelerated process. Human growth velocity can 

be as high as 100cm/year or more in fetal life, 50cm/y at birth, remains around 5cm/y 

during late childhood, and stops just after the pubertal growth spurt (Karlberg 1987). 

Any disturbance in growth velocity may be an early indication of a great variety of 

hormonal and non-hormonal systemic diseases, which might compromise the 

individual’s final height (Simm and Werther 2005).  

While the influence of hormonal status has been better established, the local signaling 

pathways that regulate linear bone growth is not fully understood, although substantial 

progress in this field has been made (Kronenberg 2003).   Skeletal development and 

systemic hormonal regulation of growth will be briefly commented on. Then, the 

molecular mechanisms intrinsic to the growth plate that regulate proliferation and 

differentiation of chondrocytes within distinct zones and throughout age, as well as 

their repercussion on postnatal bone growth will be described in more detail.  

 

1.2 Skeletal Development 

The vertebrate skeleton is built from condensations of mesenchymal cells (MSC) that 

adhere through the expression of adhesion molecules and, under a selective regulation 

of genes, differentiate into either two processes: intramembranous or endochondral 

ossification (Hall and Miyake 2000; Kronenberg 2003). Intramembranous ossification 

is mainly responsible for the formation of the flat bones of the skull and medial 

clavicles; and result from direct differentiation of MSC into bone cells (osteoblasts), 

which lay down a matrix rich in type I collagen. Transcription factor such as RUNX2, 

previously named Cbfa1, is a key regulator of osteoblast differentiation (Ducy, Zhang 

et al. 1997; Komori, Yagi et al. 1997), as well as the Wnt-β/Catenin signaling pathway 

has been shown to be essential to direct MSC into osteogenic program (Day, Guo et al. 

2005). However, most of the skeleton, including the limbs, results from the process of 

endochondral ossification. 
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1.2.1 Endochondral Ossification (Limb Formation) 

Endochondral ossification constitutes a complex process where MSC become 

chondrocytes (cartilaginous cells), which are used as a template to form bone. During 

this process, chondrocytes secrete a matrix rich in type II collagen (Kosher, Kulyk et al. 

1986) and proteoglycan aggrecan, and express a selective set of genes and transcription 

factors that direct the formation of bone. Parallel to this process, cells at the border of 

mesenchymal condensations form perichondrial cells, which will form the 

perichondrium that surround cartilage of the developing bone (Kronenberg 2003).  

Endochondral Ossification (limb formation) 

 

Fig. 1. Endochondral ossification illustrated into sequential steps:  A) Mesenchymal cells (MSC) 
form a condensation, and B) undergo differentiation into cartilage cells (chondrocytes) to form the 
cartilaginous anlagen of the bone. C) Chondrocytes in the center of the shaft stop proliferating, 
undergo hypertrophy and induce blood vessels invasion (primary ossification center) and formation 
of bone collar. D) Then, bone cells (osteoblasts) are formed and originate the primary ossification 
center (primary spongiosa). Meanwhile, growth consists of chondrocyte proliferation in one 
dimension, hypertrophy, and mineralization of the surrounding matrix. Secondary ossification 
centers also form as blood vessels enter near the tips of the bone. E) Finally, growth plate cartilage 
rest between epiphyseal and metaphyseal bones during postnatal life. In the outer part of 
epiphysis, chondrocytes cells become articular cartilage. Adapted from Gilber, S.F., 2000. 

Endochondral ossification spreads outward in both directions from the center of the 

bone (Fig. 1). At the same time that the cartilage mould further enlarges through 

continued proliferation of chondrocytes, actively dividing osteoblasts arise in regions of 

the cartilage called ossification centers. As the ossification front get close to the ends of 

the cartilage mould, the chondrocytes stop proliferating, undergo hypertrophy and are 

replaced by bone, pushing out the cartilaginous ends of the bone to form the epiphyseal 
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cartilage (Gilbert 2000). Together with continuous chondrocyte proliferation, 

hypertrophic chondrocytes becomes the principal engine of bone growth, direct 

mineralization of their surrounding matrix rich in type X collagen, attract blood vessels 

trough the production of vascular endothelial growth factor (VEGF) as well as other 

factors, and attract chondroclasts that digest the matrix that will be later replaced by 

bone. In addition, hypertrophic chondrocytes direct adjacent perichondrial cells to 

become osteoblasts, forming a bone collar. Finally, the terminal hypertrophic 

chondrocytes undergo apoptosis, and the invading osteoblasts that lay down a bone 

matrix using the calcified cartilage matrix as a scaffold. As consequence, new bone is 

created progressively at the bottom of the growth cartilage, which results in 

longitudinal bone growth.  

 

1.3 Postnatal Growth Plate 

1.3.1 Structural Organization & Function 

The growth plate is the final target organ for endochondral ossification, which allows 

the elongation of long bones during post-natal life until late adolescence, when growth 

stops and the growth plates fuse, determining the final height of the individual 

(Hunziker 1994).  

This specialized cartilage is located in the end of the long bones, between the 

epiphyseal and metaphyseal bone, and consists of three histological and functionally 

discrete layers that follow an elegant developmental program (Burdan, Szumilo et al. 

2009) (Fig. 2). Proximal to the epiphysis (toward the end of the bone), chondrocytes in 

the resting zone (RZ) are small, round, singly or distributed in pairs within a compact 

extracellular matrix (ECM), with a low proliferation rate. In vivo studies in rabbits 

show that after removal of proliferative and hypertrophic zones,  leaving only RZ in the 

growth plate bed, a complete growth plate structure is re-established within 1 week, 

suggesting that RZ chondrocytes act as ’stem-like’ cells that continuously renew the 

pool of proliferative chondrocytes (Abad, Meyers et al. 2002). Furthermore, 

implantation of growth plate by placing resting zone ectopically, alongside the 

proliferative columns, induced 90-degree shift in the orientation of nearby proliferative 

zone chondrocytes, suggesting that RZ chondrocytes may be partially responsible for 
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the spatial organization of the growth plate into distinct zones of proliferation and 

hypertrophy as well (Abad, Uyeda et al. 1999; Abad, Meyers et al. 2002). 

 

Fig. 2. Structural Organization of the Growth Plate: Placed between epiphyseal and metaphyseal 
bone of long bones, the growth plate is formed by distinct zones that represent histological and 
functional stages of chondrocyte differentiation: resting (stem-like), proliferative and hypertrophic 
zones. 

 

Next, in the proliferative zone (PZ), chondrocytes assume a flattened, discoid shape and 

form column-like structures, resembling “stacks of coins”, that are oriented along to the 

long axis of the bone, thus directing the lengthening of the bone primarily in one 

dimension. This layer has a high proliferation rate and produces a matrix (ECM) rich in 

type II and type IX collagens (Hunziker and Schenk 1989; Nilsson and Baron 2004).  

In the hypertrophic zone (HZ), chondrocytes undergo major changes in their 

phenotype, marked by physical and biochemical changes that occur in a spatial and 

temporal manner. Hypertrophic chondrocytes lose their capacity to divide, decrease 

their DNA synthesis, and have a 10-fold increase in their intracellular volume 

(Hunziker, Schenk et al. 1987).  Rather than a passive swelling, this is an active 

process, marked by an increase in organelles such as mitochondria and the endoplasmic 

reticulum (Hunziker 1994). Chondrocyte hypertrophy has an important role in the 

longitudinal growth of the skeleton. The increase in height of chondrocytes is 

responsible for up to 73% of long bone growth, with the remainder being due to matrix 

synthesis and chondrocyte proliferation (Wilsman, Farnum et al. 1996). At the end of 

the cell columns, terminally differentiated hypertrophic chondrocytes, prepare the 
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surrounding matrix as a “scaffold on which osteoclasts build”, and bone gradually 

replaces the newly formed cartilage (Stump 1925).  They produce a calcified matrix 

rich in type X collagen (Hunziker 1994), and expression of alkaline phosphatase has 

been related to the widening of the growth plate by increasing phosphate ions required 

for calcification of the ECM. Finally, chondrocytes undergo apoptosis, and ECM is 

degraded, followed by invasion of the vascular channels and bone-marrow stromal 

cells. Essentially, the growth plate is an avascular organ that relies on diffusion of both 

oxygen and nutrients for cell metabolism from vascular arcades localized on the 

metaphyseal side of the growth plate (Skawina, Litwin et al. 1994).  There, vascular 

channels are aligned along the longitudinal axis of the bone, and contain an ascending 

and descending capillary system (Aharinejad, Marks et al. 1995). However, 

endochondral ossification doesn’t occur without vascular invasion of growth plate 

(Provot and Schipani 2007). It is worth noting that the vascular endothelial growth 

factor A (VEGFA), expressed solely by the hypertrophic chondrocytes, is a key factor 

responsible for vascular invasion (Gerber, Vu et al. 1999; Carlevaro, Cermelli et al. 

2000; Colnot and Helms 2001). At the same time, hypertrophic chondrocytes undergo 

apoptosis and vascular invasion occurs; bone collar formation is induced in the 

surrounding perichondrium (Chung, Lanske et al. 1998). Then, osteoblasts replace the 

disappearing cartilage with trabecular bone, and bone marrow is formed (Skawina, 

Litwin et al. 1994; Solomon, Berube et al. 2008).   

As long as the growth plate is able to produce chondrocytes, the bone continues to 

grow. The progression from proliferating to terminal differentiation of hypertrophic 

cells is the key to the growth of those skeletal elements that are formed by 

endochondral ossification. Without chondrocyte proliferation and hypertrophy, 

endochondral bones cannot grow in length, and without hypertrophic cell death and the 

concomitant vascular invasion, the cartilage model cannot be replaced by bone. The 

study of molecular mechanisms that regulate chondrocytes proliferation and 

differentiation is an ongoing process, and there is still a lack of knowledge on how 

known and unknown mechanisms works together to regulate linear bone growth. 

1.3.2 Growth Plate Senescence 

Parallel to the observed decline in postnatal growth rate, growth plate undergoes 

structural and functional changes that appear to be due to intrinsic mechanisms, rather 
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than caused by changes in hormonal or any other systemic factor (Gafni, Weise et al. 

2001; Weise, De-Levi et al. 2001) (Fig. 3). 

 

   Fig. 3. Structural changes during growth plate senescence. Adapted from Nilsson O., 2004. 
 

First, an overall decrease in the total height of the growth plate, as well as of each 

individual zone, is observed. This phenomenon is accompanied by a decline in the 

number of proliferative and hypertrophic chondrocytes per column, more widely 

spaced columns, and smaller size of the hypertrophic cells (Kember 1973). In addition, 

an age-dependent increase in apoptosis of hypertrophic chondrocytes has been reported, 

and might contribute to the age-dependent decline in growth rate (Chrysis, Nilsson et 

al. 2002).  

The senescence program of growth plate is primarily marked by a decline of the 

proliferation rate of chondrocytes (Kember 1979).  In vivo transplantation of growth 

plates between rabbits of different ages results in different growth rates in the recipient. 

The growth rates of transplanted growth plates are dependent on the age of the donor 

animal, i.e., younger donors lead to a higher growth rate in both young and older 

recipients (Stevens, Boyer et al. 1999). This study indicates that the age-dependent 

decline in growth rate is due to a mechanism that is intrinsic to the growth plate rather 

than to a systemic mechanism. This intrinsic mechanism has been referred to as 

‘growth plate senescence’ (Baron, Klein et al. 1994).  
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1.3.3 Growth Plate Fusion & Final Height 

In humans, and most mammals, cessation of growth is accompanied by the fusion of 

the epiphysis and metaphysis, as the growth plate is ossified. Epiphyseal fusion is an 

active process with its own hormonal control, cellular mechanisms, and structural 

features. For a long time, epiphyseal fusion was believed to be the cause of cessation of 

growth (Wilkins 1965; Parfitt 2002). However, it has been clear that the growth plate 

narrows not because cartilage replacement occurs earlier, but because cartilage addition 

occurs more slowly as the rate of chondroblast proliferation declines (Walker and 

Kember 1972). Thus, the growth plate does not begin to disappear until proliferation 

has stopped altogether. Estrogens are a key component in the control of physis fusion in 

both sexes (Grumbach 2004). For more detail on its role in growth plate closure, refer 

to the section of hormonal regulation of growth plate by Sex hormones (section 

1.4.1.2).  

1.3.4 Catch-Up Growth 

Following remission of diverse chronic diseases that affect growth development, 

“Catch-up growth” may occur, which is a phenomenon characterized by height velocity 

above the normal limits for age. As a result, final height is improved, although this 

recovery of height might be complete or not (Gafni and Baron 2000). Two principal 

hypotheses have been proposed to explain the mechanism of catch-up growth. The 

‘neuroendocrine’ hypothesis postulates a central nervous system mechanism that 

compares actual body size with an age-appropriate set-point and then adjusts growth 

rate accordingly (Tanner 1963). However, evidences that growth inhibition in a single 

growth plate is followed by local catch-up do not support the neuroendocrine model 

(Baron, Klein et al. 1994). Thus, a new hypothesis that places the mechanism within the 

growth plate itself has been proposed. Accordingly to this model, growth-inhibiting 

conditions decrease proliferation of growth plate “stem-like” cells and, as consequence, 

preserve their proliferative potential. Experiments analyzing the catch-up growth of 

animals after treatment of growth-inhibiting conditions, such as hypercortisolism and 

hypothyroidism, reveal that after the growth-inhibiting condition resolves the growth 

plates are less senescent and therefore grow more rapidly than normal for age (Gafni, 

Weise et al. 2001; Marino, Hegde et al. 2008). During catch-up, animals treated from 

hypothyroidism presented a delayed decline not only in their growth plate function and 

structure, but in molecular markers of growth plate senescence as well (Gafni, Weise et 
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al. 2001; Marino, Hegde et al. 2008). Therefore inhibition of growth by different 

conditions delay the developmental program of growth plate senescence, ‘holding’ the 

finite proliferative capacity of growth plate chondrocytes on ‘standby’ state, which, at 

least partly, explain the phenomenon of catch-up growth. The molecular mechanisms 

controlling the program of growth plate senescence is just starting to unravel, but will 

explain the observed decline in growth rate of growth plate cartilage, and may also give 

insight to the simultaneous decline in growth rate of other tissues during postnatal 

growth. 

 

1.4 CONTROL OF GROWTH & DEVELOPMENT 

1.4.1 Hormonal Regulation of Growth Plate Cartilage 

A network of hormones is required for normal growth and development during 

childhood and adolescence. In healthy children, these hormones are produced in 

appropriate amounts. Only when their circulating levels are too low or to high for 

prolonged periods will there be an adverse effect on height.  In this section, we will 

briefly discuss the systemic control of growth by the major hormones: the growth 

hormone (GH), thyroid hormones (T3), Glucocorticoids (GCs) and sex hormones 

(Estrogen and Androgens), but focusing our discussion on their local regulation in the 

growth plate (Fig. 4). 

1.4.1.1 GH-Insulin-like Growth Factors (IGFs) signaling 

Growth hormone (GH) is perhaps the most well studied hormone with established 

effects on longitudinal growth. In an orchestrated network with insulin-like growth 

factors, IGF1 and IGF2, and their receptors, GH is believed to be the key regulator of 

overall linear growth. As an example, enhanced GH secretion caused by a pituitary 

adenoma in childhood leads to gigantism (Sotos 1996; Eugster and Pescovitz 1999); 

while any defects in its synthesis, release or local action results in severe dwarfism 

(Rosenfeld 2005). Thus, targeted ablation of the GH receptor (GHR), IGF1, IGF2, or 

type1-IGF receptor (IGFR1) impairs bone growth (Walenkamp and Wit 2007). 

GH acts both directly and indirectly in the growth plate chondrocytes. Gene expression 

of GH-IGF system in growth plate cartilage by diverse techniques has revealed that 
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GHR, IGF1, IGF2 and most of IGF binding proteins (IGFBPs) are detected in growth 

plate chondrocytes in several species (Nilsson, Carlsson et al. 1990; Shinar, Endo et al. 

1993; Wang, Wang et al. 1995; Reinecke, Schmid et al. 2000; Parker, Hegde et al. 

2007).   

 

Fig. 4. Hormonal Regulation of Growth Plate Cartilage by major hormones: GH-IGF1, GCs, T3, 
and sex hormones. Positive (+) and negative (-) effects on target organs are shown. Systemic 
regulation: orange color (dash lines). Direct effect on growth plate cartilage: orange color (full 
line), if positive; or red line, if negative effect on chondrocytes proliferation and differentiation. 

At the systemic level, pituitary GH acts on the liver to generate IGF1 that acts as an 

endocrine factor that stimulates longitudinal bone growth. The role of circulating IGF1 

has been supported by the two following complementary studies. Liver-specific 

knockout of IGF1 in mice reduce circulating IGF1 levels by approximately 75%, 

without appreciable effect on postnatal growth, suggesting that the remaining bioactive 

IGF1 levels were enough to preserve longitudinal growth (Liu, Yakar et al. 2000). In 

addition, double knockout of liver-specific IGF1 and acid-labile sub-unit (ALS), a 

component of the circulating IGF1 complex required for bioactivity of  IGF1, further 

reduces the levels of circulating IGF1, and caused inhibition of linear growth and 

decreased height of the growth plate (Yakar, Rosen et al. 2002). Furthermore, IGF1 
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treatment of mice and human with inactivating mutation on GHR markedly improve 

their linear bone growth, supporting the positive role of circulating IGF1 on linear 

growth (Guevara-Aguirre, Rosenbloom et al. 1997; Sims, Clement-Lacroix et al. 2000). 

Direct injection of GH into the tibial growth plate accelerates longitudinal growth in the 

injected growth plate compared to the contra-lateral control-tibia, reassuring their direct 

role in growth plate (Isaksson, Jansson et al. 1982). Parker et al. have detected GHR 

expression with similar levels in all zones of rat growth plate (Parker, Hegde et al. 

2007). At the local level, GH appears to act locally not only in the resting zone of the 

growth plate, rescuing them into a proliferative state (Ohlsson, Nilsson et al. 1992), but 

also by stimulating local IGF1 production in proliferative and hypertrophic zones 

(Schlechter, Russell et al. 1986; Hunziker, Wagner et al. 1994; Wang, Zhou et al. 

1999). Interestingly, double knockout of GHR and IGF1 results in mutant mice smaller 

than single gene knockouts, indicating that GH and IGF1 co-interact positively by 

promoting longitudinal growth (Wang, Zhou et al. 1999; Lupu, Terwilliger et al. 2001). 

These findings are consistent with the ‘dual effector hypotheses’ of GH in the growth 

plate cartilage. One interesting observation is the absence or very low level of IGF1 

mRNA expression throughout all zones of the growth plate, suggesting that local IGF1 

may not be produced by growth plate chondrocytes, but most likely come from 

surrounding tissues, i.e. perichondrium or bone (Parker, Hegde et al. 2007).  

On the other hand, IGF2 has been found at high levels in the growth plate, especially in 

resting and proliferative chondrocytes, suggesting its role in regulation of cell 

proliferation (Parker, Hegde et al. 2007). IGF2 is a positive regulator of prenatal 

growth, independent of GH. However, during postnatal growth, its role remains 

unclear. The finding that IGF2 expression declines by a thousand-fold in growth plate 

and surrounding tissues during a period of rapidly declining growth rate (Parker, Hegde 

et al. 2007) is consistent with the finding that IGF2 deficient mice present impaired 

longitudinal bone growth, primarily early in life (Jehle, Schulten et al. 2003).  In 

addition, IGF2 expression declines in multiple tissues during postnatal development of 

rodents, which may suggest a regulatory mechanism common to multiple cell types 

(Brown, Graham et al. 1986; Lund, Moats-Staats et al. 1986; Parker, Hegde et al. 

2007). 
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1.4.1.2 Estrogens 

1.4.1.2.1 Pubertal Growth Spurt 

The effect of sex steroids, estrogen and androgens, on stature depends on the age at 

which they are active, and act mostly in the natural growth acceleration during puberty 

(‘pubertal growth spurt’) and ultimately in the cessation of growth accompanied by 

epiphyseal fusion. In the presence of pathological conditions, such as sexual 

development at a precocious age, increase in sex steroids may therefore result in 

tallness at the time of steroids production, but because growth also stops prematurely, 

ultimate stature is likely to be short (Lee 2003). Conversely, when pubertal growth 

spurt is delayed, stature will fall off compared with that of contemporaries, but growth 

may continue to an older age and make up for the initial deficit, with a possible 

outcome of normal or tall stature (Butenandt and Kunze ; Zirilli, Rochira et al. 2008).   

The pubertal growth spurt has a better temporal correlation with the increase in 

estrogen levels than androgen levels (Klein, Martha et al. 1996). A near-normal growth 

spurt occurs in patients with androgen insensitivity (Zachmann, Prader et al. 1986),   

whereas little or no growth spurt occurs in patient with aromatase deficiency, an 

enzyme that converts androgen in estrogen (Rochira and Carani 2009).  

Much of the growth acceleration due to estrogen is mediated by estrogen-induced 

stimulation of the GH-IGF1 axis (Grumbach 2000). The pulses of GH secretion are 

known to increase in amplitude during puberty. In addition, estrogen treatment results 

in elevated circulating levels of GH and IGF1, whereas blocking estrogen signaling 

reduces these levels (Metzger and Kerrigan 1994; Hero, Norjavaara et al. 2005). 

Estrogens effects are modulated mainly by two nuclear receptors, estrogen receptor-α 

(ERα) (Green, Walter et al. 1986; Greene, Gilna et al. 1986) and estrogen-receptor-β 

(ERβ) (Kuiper, Enmark et al. 1996), in a complex that interacts with estrogen response 

elements (EREs) in the promoter regions of target genes and activate a variety of 

intracellular signaling cascades. A new membrane-bound G protein-coupled estrogen 

receptor (GPR30) that rapidly mediates estrogen signaling was recently identified as 

well (Revankar, Cimino et al. 2005). At the level of growth plate, the local action of 

estrogens is supported by the expression of both estrogen receptors (ERα and β) in the 

postnatal growth plate of rats, rabbits, and humans (Nilsson, Abad et al. 2002; Nilsson, 

Chrysis et al. 2003). GPR30 is also found at high levels in the hypertrophic zone of 
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growth plate, decrease during puberty, and appear to be required for normal estrogenic 

responses in the growth plate, contributing to modulate pubertal bone growth (Chagin 

and Savendahl 2007).  

1.4.1.2.2 Epiphyseal Fusion 

Estrogens are a key component in the control of physis fusion in both sexes.  If 

deficiency of estrogen occurs, epiphyseal plate can remain unfused long after growth 

has stopped, followed by normal fusion as long as the missing hormone is replaced 

(Grumbach 2004). Patients with genetic mutation in either the gene encoding the 

aromatase enzyme that converts androgen to estrogen (Morishima, Grumbach et al. 

1995), or in the gene encoding the estrogen receptor-α (Smith, Boyd et al. 1994) fail to 

close their physes at the time of sexual maturation, and show evidence of increased 

height due to longitudinal bone growth into adulthood. Conversely, patients who are 

exposed to estrogen prematurely close their physes earlier than predicted, such as in 

precocious puberty. 

At the local level, estrogen may affect senescence by acting directly on growth plate 

chondrocytes. Both types of estrogen receptors (ERα and β) have been detected in 

postnatal growth plate of rats, rabbits, and humans (Nilsson, Abad et al. 2002; Nilsson, 

Chrysis et al. 2003). In particular, ERs in resting zone might mediate the long-term 

estrogenic effect on growth plate senescence and epiphyseal fusion (Nilsson and Baron 

2004). The mechanism by which estrogen controls epiphyseal fusion is not fully 

understood. The current concept is that estrogen does not stimulate the ossification of 

cartilage directly, but it accelerates the normal process of growth plate senescence, 

which secondarily causes earlier fusion (Weise, De-Levi et al. 2001). In humans, this 

hypothesis may explain why the timing of estrogen-mediated fusion depends on the age 

of the individual. Exposure of estrogen, as seen in precocious puberty, may take up to 

10 years if it occurs during early childhood; or only a few months, if it occurs later 

during adolescence (Sigurjonsdottir and Hayles 1968; Carani, Qin et al. 1997; 

Bilezikian, Morishima et al. 1998). This temporal association indicates that fusion is 

triggered when the proliferative potential of growth plate chondrocytes is exhausted 

(Nilsson and Baron 2004). In a young child, there would be a large proliferative 

capacity, which requires longer time of estrogen exposure until exhaustion of the 

replicative capacity of the growth plate has been reached.  On the other hand, the 

proliferative capacity in the growth plate of ‘older individuals’ is far less; and requires a 
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shorter exposure to estrogen until complete exhaustion is achieved (Nilsson and Baron 

2004).  

1.4.1.3 Androgens 

Androgens also contribute to the pubertal growth spurt, to a lesser extent than 

estrogens, by mechanisms not fully explained. During puberty, like estrogens, 

testosterone stimulates the GH-IGF1 axis, whereas non-aromatizable androgens don’t, 

suggesting that androgens ‘per se’ stimulate pubertal growth through other mechanisms 

in a GH-independent manner (Keenan, Richards et al. 1993). Local administration of 

testosterone in growth plate cartilage increases unilateral rat tibial growth plate width, 

suggesting the local action of testosterone, independent of GH (Ren, Malozowski et al. 

1989). However, these local effects may be partially mediated by an increase in local 

IGF1 expression (Maor, Segev et al. 1999; Krohn, Haffner et al. 2003).  

In fact, most of androgen effects on growth are probably due to aromatization into 

estrogens in peripheral tissues, possibly in growth plate as well. Recent study by 

Chagin et al. show that oxandrolone does not influence the linear growth of cultures of 

fetal rat metatarsal bones and support the hypothesis that androgens affect linear growth 

mainly after being aromatized to estrogen locally in the growth plate (Chagin, Vannesjo 

et al. 2009). This hypothesis is supported by findings of  aromatase P450 (CYP19) (Oz, 

Millsaps et al. 2001; van der Eerden, Lowik et al. 2004) and androgen receptor (AR) 

(Abu, Horner et al. 1997; van der Eerden, van Til et al. 2002; Nilsson, Chrysis et al. 

2003) expression in the growth plate of different species, including rat and humans. 

1.4.1.4 Thyroid Hormones 

Thyroid hormones, thyroxin (T4) and triiodothyronine (T3) are primarily responsible 

for proper development and differentiation of all cells in the human body. They are 

determinant for postnatal somatic growth, including longitudinal bone growth 

(Williams, Robson et al. 1998). Fundamentally, thyroid hormone signaling results 

from the interaction of nuclear thyroid hormone receptors (TRs) with specific target 

gene promoters, a process that can either enhance or repress transcription. The 

underlying mechanism of these phenomena is deiodination. The iodothyronine 

deiodinase type II (D2) generates the active form of thyroid hormone T3 via 

deiodination of T4. Untreated hypothyroidism in children, either congenital or 

acquired, may result in severe growth retardation and delayed skeletal maturation 
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(Rivkees, Bode et al. 1988; Leger and Czernichow 1989). In contrast, 

hyperthyroidism in children is associated with accelerated growth rate and skeletal 

maturation, and although it is accompanied by tall stature at an earlier stage of the 

disease, ultimately result in normal predicted stature (Buckler, Willgerodt et al. 1986; 

Kvistad, Lovas et al. 2004). In hypothyroid rats, the growth plate show a decrease in 

the heights of both proliferative and hypertrophic zones, accompanied by a decline in 

chondrocyte proliferation and hypertrophy, vascular invasion and mineralization. 

Moreover, the normal columnar organization of the growth plate is disrupted 

(Stevens, Hasserjian et al. 2000).  

Thyroid hormone regulates linear growth through different mechanisms. In vivo 

studies suggest that T3 may stimulate longitudinal growth by increasing GH-IGF1 

secretion (Kindblom, Gothe et al. 2001). Skeletal abnormalities in TRα1-/- and β-/- are 

associated with inhibition of the GH–IGF1 axis, and growth retardation is reversed by 

GH replacement, but it does not rescue the growth plate ossification abnormalities 

(Kindblom, Gothe et al. 2001). These findings suggest that thyroid hormone also 

exert direct effects on the skeleton.  

The direct effect of T3 on the growth plate and bone is supported by the expression of 

the α1, α2, β1 and β2 isoforms of T3 receptors (TR) in chondrocytes and osteoblasts 

(Abu, Bord et al. 1997; Ballock, Mita et al. 1999; Abu, Horner et al. 2000). In rat 

growth plate, TRs proteins are expressed in resting and proliferating zone 

chondrocytes but not in the hypertrophic zone (Robson, Siebler et al. 2000; Stevens, 

Hasserjian et al. 2000). However, in humans, both mRNA and protein of all isoforms 

of TRs are widely distributed in each zones of the growth plate (Abu, Bord et al. 

1997; Abu, Horner et al. 2000). In addition, the expression of iodothyronine 

deiodinase type II (D2) in the growth plate suggests that local conversion of T4 to T3 

by this enzyme may contribute to local effects of T3 in the growth plate (Miura, 

Tanaka et al. 2002; Shen, Berry et al. 2004; Capelo, Beber et al. 2008). However, the 

precise localization of T3-responsive cells within the growth plate and their target 

genes remains unknown. 

 The generation of transgenic mice lacking different types of TRs has enlightened 

their functional roles in growth plate and longitudinal growth (O'Shea and Williams 

2002). Deletion of all TRα isoforms (TRα0/0) result in linear growth retardation, 

disorganization of the normal columnar architecture, impaired chondrocyte 
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hypertrophy and delayed mineralization of growth plates chondrocytes (Gauthier, 

Plateroti et al. 2001), as it is featured in growth plate of hypothyroid mice (Stevens, 

Hasserjian et al. 2000). On the other hand, selected deletion of all isoforms of TRβ 

(TRβ-/-) result in no growth retardation or skeletal phenotype, suggesting that TRα, 

but not TRβ, is the predominant TR governing endochondral ossification (Gauthier, 

Plateroti et al. 2001).  

Surprisingly, the majority of human cases of thyroid hormone resistance are caused 

by dominant-negative mutations in the TRβ gene. These mutations cause a frame shift 

in the ligand-binding domain (TRβPV), resulting in the loss of T3 binding affinity and 

reduced transcriptional activation (Weiss and Refetoff 2000). In addition, these 

mutations may affect TRα function as well, with variable skeletal effects (Takeda, 

Sakurai et al. 1992; Olateju and Vanderpump 2006). Treatment of hypothyroid rats 

with GC-1, a synthetic analog of TH that selectively binds and activates TRβ over 

TRα while retaining the same binding affinity as T3, failed to normalize longitudinal 

growth and structural abnormalities in growth plate (Freitas, Capelo et al. 2005). 

However, the same study showed normalized differentiation of hypertrophic 

chondrocytes, type X collagen expression, and growth plate thickness of treated 

animals, suggesting that some essential effects of thyroid hormone on bone growth 

may be mediated by TRβ as well (Freitas, Capelo et al. 2005). 

 
1.4.1.5 Glucocorticoids  

Glucocorticoids (GCs) excess is one of the commonest conditions associated with 

growth retardation, but rarely due to pituitary or adrenal disease in childhood. 

Hypercortisolism is more commonly the result of high dosage GCs treatment of 

several conditions during growth development, such as juvenile arthritis, chronic 

asthma and nephrotic syndrome (Allen 1996; Savage, Scommegna et al. 2002). 

Conversely, familial GC deficiency syndrome is correlated with tall stature, 

suggesting that GCs act as negative regulator of longitudinal growth at normal levels 

(Chung, Chan et al. 2010).  

Expression of the glucocorticoid receptor (GR) gene has been demonstrated in rat and 

human growth plate chondrocytes (Abu, Horner et al. 2000; Silvestrini, Ballanti et al. 

2000), suggesting their local action as well. Supporting this hypothesis, systemic 

administration of GC in several species reduces tibial length and growth plate width 
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(Altman, Hochberg et al. 1992; Silvestrini, Ballanti et al. 2000; Gafni, Weise et al. 

2001).  Moreover, local infusion of dexamethasone in one growth plate suppresses 

growth in the infused leg compared to the vehicle-treated contra-lateral leg (Baron, 

Huang et al. 1992).  Smink and collaborators showed that even short term treatment 

with GCs in mice lead to growth retardation, decreased growth plate width, with 

decreased rate of chondrocytes proliferation and increased apoptosis in hypertrophic 

zone, accompanied by a reduction in the local level of IGF1 (Smink, Gresnigt et al. 

2003). 

Altogether, these observations suggest that the local and suppressive effects of GCs 

appear to occur mainly through a potent suppression of chondrocyte proliferation 

(Annefeld 1992; Smink, Gresnigt et al. 2003), and possibly due to an increase in 

apoptosis of hypertrophic chondrocytes in the growth plate (Chrysis, Ritzen et al. 

2003; Smink, Gresnigt et al. 2003). However, altered GH/IGF1 system may not be 

excluded as a potential additional mechanism. 

 
1.4.2 Local (Paracrine/ Autocrine) Regulation of Growth Plate Cartilage 

A multitude of signaling mechanisms are required to maintain spatial organization 

and optimal balance between chondrocyte proliferation and differentiation within the 

growth plate cartilage. To date, several signaling pathways that control the 

endochondral ossification are well-established, especially during early 

chondrogenesis; since most of the studies have been performed in embryonic models. 

A growing body of evidence suggests that many of the genes important for embryonic 

skeletogenesis and still unknown genes, also play an important role during postnatal 

growth. However, how these distinct molecules interact to coordinate postnatal bone 

development is not well understood. This section will focus on the study of a number 

of transcription factors and genes that we are known to regulate endochondral 

ossification at the level of the growth plate, giving close attention to its regulation 

during postnatal growth.  
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1.4.2.1 Transcription Factors 

1.4.2.1.1 SOX9 

SOX9 (SRY (sex determining region Y)-box 9) is a critical factor for all phases of the 

chondrocyte lineage, from early condensations to the conversion of proliferating 

chondrocytes to hypertrophic chondrocytes, and also determines the fate of MSC 

condensations into collagen type II expressing chondrocytes(Lefebvre and de 

Crombrugghe 1998; Zhou, Lefebvre et al. 1998; Lefebvre and Smits 2005). In humans, 

SOX9 mutations cause the rare condition campomelic dysplasia (CD) characterized by 

severe dwarfism, bowing and angulations of long bones among other skeletal 

anomalies (Foster, Dominguez-Steglich et al. 1994; Wagner, Wirth et al. 1994). These 

skeletal anomalies are consequent to a defect in chondrocyte differentiation within 

MSC condensations and decreased synthesis of cartilage matrix. Selective SOX9 

knockout from early limb mesenchyme by using a Cre-loxP strategy, results in the 

absence of cartilage condensations and increased apoptosis in the mesenchyme 

(Akiyama, Chaboissier et al. 2002).  

At later stages, overexpression of SOX9 in mice results in growth plates with a shorter 

proliferative zone, decreased chondroblast proliferation and Cyclin D1 expression, 

which is required for optimal proliferation (Akiyama, Lyons et al. 2004). Furthermore, 

SOX9 appears to delay the pre-hypertrophy of chondrocytes, since SOX9+/- mouse 

fetuses feature prematurely mineralized cartilages and expanded hypertrophic zones in 

their growth plate (Bi, Deng et al. 1999). The molecular mechanism of SOX9 

regulation is not fully understood. There is evidence that SOX9 may regulate 

chondrocyte differentiation, proliferation and maturation by cross-talking with the 

Wnt/β-Catenin pathway, which is crucial for the differentiation of MSC directly into 

osteoblast (Akiyama, Lyons et al. 2004).  

Interestingly, while SOX9 transcripts are highly expressed throughout the fetal growth 

plate; during postnatal life, it is mainly expressed in proliferating chondrocytes and 

switched off in hypertrophic chondrocytes (Wright, Hargrave et al. 1995; Ng, Wheatley 

et al. 1997). In a recent study, development of transgenic mice misexpressing Sox9 in 

hypertrophic chondrocytes under the control of a BAC-Col10a1 promoter, shows that 

newborn mice present an almost complete lack of bone marrow strongly retarded 

vascular invasion into hypertrophic cartilage and impaired cartilage resorption. These 
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results in delayed endochondral bone formation and reduced bone growth (Hattori, 

Muller et al. 2010). In addition, suppression of VEGF expression was observed, which 

is an important factor for vascularization of terminally differentiated chondrocytes, 

suggesting that down-regulation of Sox9 in hypertrophic zone of normal growth plates 

is essential for allowing vascular invasion, bone marrow formation and also 

endochondral ossification (Hattori, Muller et al. 2010).  

1.4.2.1.2 RUNX2 (Runt-related Transcription Factor 2) 

RUNX2 (Runt-related Transcription Factor2) , previously named Cbfa1,  is expressed 

in the late condensation stage of chondrogenesis, followed by a substantial decrease in 

proliferating chondrocytes, with an increased expression again in prehypertrophic and 

hypertrophic chondrocytes. Although better known by its crucial role in differentiation 

of MSC into osteoblasts, RUNX2 is also important in the regulation of growth plate 

cartilage, by promoting differentiation of chondrocytes into hypertrophy (Komori, Yagi 

et al. 1997; Otto 1997; Inada, Yasui et al. 1999). RUNX2 knockout mice lack most 

bones and (?) present decreased numbers of hypertrophic chondrocytes, which fail to 

mineralize their matrix, and also show lower or absent expression of genes commonly 

expressed in late differentiated chondrocytes, such as osteopontin and matrix 

metalloproteinase 13 (MMP13) (Komori, Yagi et al. 1997; Otto 1997; Inada, Yasui et 

al. 1999). In addition, transgenic expression of a dominant-negative form of RUNX2 

blocks hypertrophy of all chondrocytes (Ueta, Iwamoto et al. 2001). On the other hand, 

transgenic expression of RUNX2 accelerates hypertrophy of normal chondrocytes, and 

reverses the phenotype in knockout mice (Takeda, Bonnamy et al. 2001; Ueta, Iwamoto 

et al. 2001).  

1.4.2.2 Vascular Endothelial Growth Factor (VEGF) 

Vascular endothelial growth factor (VEGF) appears to be a key factor for vascular 

invasion of the growth plate, a critical step for successful bone formation. VEGF is a 

protein that targets vascular endothelial cells, expressed exclusively in hypertrophic 

chondrocytes in the growth plate (Gerber, Hillan et al. 1999; Gerber, Vu et al. 1999; 

Horner, Bishop et al. 1999). Hypertrophic chondrocytes also express the VEGF 

receptor, suggesting that this factor may have an autocrine role in these cells 

(Carlevaro, Cermelli et al. 2000). Inhibition of VEGF function by the use of an oral 

inhibiting agent (ZD4190) (Wedge and Ogilvie 2000), or by the administration of a 
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soluble receptor chimeric protein (Flt-(1-3)-IgG) that block activation of the receptor 

for VEGF (Gerber, Vu et al. 1999), leads to loss of vascular invasion, resulting in 

profound disturbances in the architecture of the growth plate. Calcified cartilage 

persists due to a decrease in the resorption of terminally differentiated chondrocytes, 

resulting in widening of hypertrophic region and in the decrease of trabecular bone 

formation. Conversely, after cessation of anti-VEGF treatment, the growth plate 

structure and function return to a normal state, with resumption of capillary invasion, 

restoration of bone growth, and resorption of hypertrophic chondrocytes.  

Several studies show evidence that other factors mentioned previously, such as Ihh, 

RUNX2, BMPs   and Sox9 are implicated in the regulation of terminal differentiation 

and angiogenesis of the growth plate through the modulation of VEGF expression   

(Gerber, Vu et al. 1999; Horner, Bishop et al. 1999; Hattori, Muller et al. 2010). 

Moreover, growth plate specific targeted deletion of a transcription factor known as 

hypoxia inducible factor (HIF-1α) that regulates VEGF expression in the embryonic 

growth plate, promoted increased cell death and reduced VEGF expression (Schipani, 

Ryan et al. 2001).  

1.4.2.3 Indian Hedgehog / Parathyroid Hormone-related Peptide 

(Ihh/PTHrP) Signaling 

Indian hedgehog (Ihh) is considered to be a master regulator of chondrocytes 

proliferation (Kronenberg 2003). Ihh belongs to the 3-member family of hedgehog 

proteins, including Desert hedgehog and Sonic hedgehog, the latter of which is one of 

the main regulators of limb outgrowth (McGlinn and Tabin 2006). Expressed mainly 

by prehypertrophic and early hypertrophic chondrocytes (Vortkamp, Lee et al. 1996), 

Ihh binds to a receptor called patched (Ptc), which activates Smoothened (Smo), a 

membrane protein that triggers a cascade resulting in gene activation. Knockout of Ihh 

in mice (Ihh-/-) result in normal skeletogenesis at the condensation stage, but is followed 

by abnormalities of bone growth mainly due to a decrease in chondrocyte proliferation 

(St-Jacques, Hammerschmidt et al. 1999). In addition, Smo knockout also leads to 

decreased proliferation of chondrocytes (Long, Zhang et al. 2001). Conversely, 

overexpression of either Ihh or Smo specifically in cartilage increases proliferation, 

suggesting that the Ihh signaling pathway is sufficient to promote chondrocyte 

proliferation (Long, Zhang et al. 2001).  



 

 

21  

Another unusual feature of Ihh null mice is an increase in the population of 

hypertrophic chondrocytes, which is due to a premature exit of cells from the pool of 

proliferating chondrocytes. The rate at which growth plate chondrocytes leave the 

proliferative zone and commit to terminally differentiated hypertrophic cells is 

controlled by an orchestrated feedback loop involving Ihh and parathyroid hormone-

related peptide (PTHrP), currently named parathyroid hormone-like peptide (PTHLP) 

(Vortkamp, Lee et al. 1996). A constitutive activation of PTH/PTHrP receptors (PPRs) 

reverses the early hypertrophy observed in Ihh null mice, but does not reverse the 

decreased proliferation observed in their growth plates (Karp 2000). These findings 

indicate that Ihh signaling regulates chondrocytes maturation and hypertrophy through 

PTHrP, but may act independently of PTHrP with regards to chondrocyte proliferation.   

A third striking abnormality in Ihh knockout mice is the absence of osteoblasts in either 

the primary spongiosa or the bone collar of long bones, suggesting that Ihh may also 

control osteoblasts differentiation. Chimaeric experiments where PPR knockout 

chondrocytes, mixed with wild-type chondrocytes, show ectopic osteoblast formation 

adjacent to the ectopically positioned hypertrophic chondrocytes. On the contrary, in 

double PPR/Ihh- knockout mice, ectopic bone was absent (Chung, Lanske et al. 1998; 

Chung, Schipani et al. 2001). Hence, Ihh not only controls the differentiation of 

osteoblasts, but also determines the location where the bone collar is formed, precisely 

at the transition between chondrocytes proliferation and hypertrophy (Kronenberg 

2003). 

PTHrP belongs to the calcium-regulating parathyroid hormone (PTH) family. It is 

expressed mainly by periarticular and early proliferative chondrocytes of the growth 

plate and plays a crucial role in keeping proliferating chondrocytes in the proliferative 

stage (Juppner, Abou-Samra et al. 1991; Vortkamp, Lee et al. 1996). On the other hand, 

its receptor is a G-protein-coupled receptor that is also shared by PTH and is localized 

primarily in the lower proliferative and prehypertrophic zones (Karaplis 1994; 

Vortkamp, Lee et al. 1996). In humans, mutations in the PTH/PTHrP receptor (PPR) 

that result in a constitutively active PTHrP signal are responsible for Jansen’s 

metaphyseal chondrodysplasia, a dwarfing disorder associated with delayed growth 

plate mineralization and hypercalcemia (Schipani, Langman et al. 1996). Interestingly, 

knockout of either, PTHrP (Karaplis 1994) or PPR (Lanske, Karaplis et al. 1996) 

causes severe dwarfism in mice and accelerated chondrocyte hypertrophy. Conversely, 
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overexpression of PTHrP (Weir 1996) or expression of a constitutively active PPR 

(Schipani 1997) in the growth plate inhibits chondrocyte differentiation.  

Altogether, these transgenic models and selected clinical cases confirm the important 

role of Ihh and PTHrP in the control of growth plate chondrocyte proliferation and 

differentiation during fetal life. In summary, it has been proposed that PTHrP secreted 

from periarticular chondrocytes acts on its receptor (PPR) localized on proliferating 

chondrocytes to keep them proliferating, and thereby delays the production of Ihh. As 

new chondrocytes are formed through proliferation in the upper part of the proliferative 

zone, chondrocytes in the lower part of the proliferative zone become sufficiently 

distant from the source of PTHrP to the point where they are no longer stimulated by 

the protein. Only then do they stop proliferating, start to hypertrophy, and synthesize 

Ihh. Ihh subsequently acts on adjacent proliferative chondrocytes to promote 

proliferation and, through mechanisms not yet fully understood, stimulate the 

production of PTHrP in periarticular chondrocytes (Kronenberg 2003). 

Several studies have shown that Ihh, PTHrP and their receptors are also expressed in 

the postnatal growth plate, indicating that Ihh-PTHrP signaling may continue to be 

beyond embryonic longitudinal bone growth (Vortkamp, Lee et al. 1996; van der 

Eerden, Karperien et al. 2000; Farquharson, Jefferies et al. 2001; Nakase, Miyaji et al. 

2001). In addition, targeted expression of constitutively active PPRs in the growth 

plates of mice lacking PTHrP  rescue their growth plate phenotype at birth and result in 

prolonged postnatal survival of PTHrP null mice by up to two months (Schipani 1997). 

After birth, however, these "rescued" animals grow less than their control littermates, 

and show premature disappearance of their growth plates and secondary ossification 

centers (Schipani 1997). These finding indicate that PTHrP is involved in the control of 

growth plate chondrocyte differentiation both during embryonic and postnatal life. 

1.4.2.4 Bone Morphogenetic Proteins (BMPs) 

Bone morphogenetic proteins (BMPs) were first identified due to their ability to induce 

ectopic bone formation, and have later been shown to be essential for multiple stages of 

skeletal development and endochondral ossification, including early patterning and 

mesenchymal cell condensation as well as regulation of chondrocyte proliferation and 

maturation in the growth plate (Urist 1965; Pogue and Lyons 2006). BMPs are multi-

functional growth factors that belong to the transforming growth factor β (TGF-β) 



 

 

23  

Superfamily. To date, around 20 BMP family members have been identified, where 

only BMPs 2 to 7 belong to the TGF-β superfamily. Three type I receptor transducer 

BMP signals (type IA, IB, and ALK-2),  through the formation of heteromeric 

complexes with threonine kinase receptors, leading to the activation of the canonical 

Smad pathway, as well other pathways (Derynck and Zhang 2003).  

BMP signaling is required as part of an instructive signal to promote commitment of 

mesenchymal cells to the chondrogenic lineage. BMP1a and BMP1b receptors 

knockout mice lack the majority of skeletal elements that form through endochondral 

ossification (Yoon, Ovchinnikov et al. 2005). Contrarily, mice deficient in the BMP 

antagonist Noggin have multiple skeletal abnormalities, including enlarged growth 

plates, presumable due to loss of opposition to BMP signaling (Brunet, McMahon et al. 

1998), and overexpression of constitutively active BMP receptors results in the 

expansion of cartilage (Pizette and Niswander 2000). One potential mechanism is 

through the maintenance of SOX9 expression in MSC condensations, the earliest 

known marker for cells committed to chondrogenesis. In vitro, BMPs promote the 

expression of SOX9 in cell cultures, and its expression is required for BMP induced 

chondrogenesis, as antisense SOX9 oligonucleotides block the ability of BMPs to 

induce type II collagen (Zehentner, Dony et al. 1999; Fernandez-Lloris, Vinals et al. 

2003). In vivo, implantation of BMP2 beads near condensed cartilage leads to up-

regulation of the Sox protein in condensation, while beads of the BMP antagonist 

Noggin lead to its severe down-regulation (Chimal-Monroy, Rodriguez-Leon et al. 

2003).  In addition, overexpression of Noggin blocks MSC condensation, leading to a 

total absence of cartilage (Capdevila and Johnson 1998).  

During later stages of chondrogenesis, BMP signaling appears to promote hypertrophic 

chondrocyte differentiation (De Luca, Barnes et al. 2001).  Expression of different 

BMPs members have specific pattern in the growth plate (Yoon and Lyons 2004; 

Nilsson, Parker et al. 2007). BMP-6 and Bmpr1a is highly expressed in hypertrophic 

chondrocytes in both, the embryonic and postnatal growth plate. BMP-2,-4, and -5 has 

been detected in the perichondrial cells of embryonic growth plates. BMP-2 was 

detected at higher levels in the hypertrophic zone of the postnatal growth plate. BMP-7 

is mainly expressed in proliferating chondrocytes. On the other hand, expression of 

gremlin, chordin, and BMP-3, all inhibitors of BMP-induced bone formation, are up-

regulated in the resting zone of the postnatal growth plate. The expression pattern in the 

postnatal growth plate suggests that there is a gradient in BMP-signaling created by the 



 

 

24 

expression of BMP agonists primarily in hypertrophic zone, and the BMP antagonist in 

resting as well as proliferative zones in the growth plate (Nilsson, Parker et al. 2007). 

Altogether, these studies point to a contribution of BMPs in both proliferation and 

differentiation of the growth plate chondrocytes during pre- and postnatal growth. 

The diverse functions of the BMP signaling pathway in the growth plate are directly or 

indirectly correlated to its interactions with other signaling pathways. Two important 

interactions are with the Ihh/PTHrP and FGF signaling pathways. BMPs interact with 

the Ihh/PTHrP pathway by promoting Ihh expression, which maintains BMP levels, 

indicating the existence of a positive feedback loop between them (Kawai and Sugiura 

2001; Minina 2001). However, neither pathway completely mediates the other’s 

functions and both act more in a synergistic way. On the contrary, BMPs and FGFs 

show functional antagonism in the regulation of chondrocytes. BMP treatment rescues 

the phenotype of FGF treated growth plates, and FGF treatment neutralizes the effects 

of BMPs (Minina, Kreschel et al. 2002). The mechanisms underlying this antagonism 

are not well understood, but may in part be due to opposite effects on Ihh production by 

hypertrophic chondrocytes (Naski, Colvin et al. 1998; Minina, Kreschel et al. 2002). 

Further functional studies are needed to clarify the interaction of these factors in the 

regulation of growth plate cartilage.  

1.4.2.5 Fibroblast Growth Factors (FGFs) 

Fibroblast growth factors (FGFs) comprise a family of at least 22 secreted proteins that 

interact with differing affinities to one of the four high-affinity FGF receptors (FGFR) 

(Ornitz and Marie 2002). Opposite to Ihh/PTHrP and BMP signaling, FGFs provide 

essential inhibitory signals in the control of chondrocyte proliferation.  

Point mutations, G to A (99%) or G to C (1%),  at nucleotide 1138 of the FGFR3 gene 

activate the FGF receptor 3 (FGFR3) and cause achondroplasia (ACH), the most 

common genetic form of dwarfism in humans, characterized by reduced growth of long 

bones with proximal elements more severely affected than distal ones (Rousseau, 

Bonaventure et al. 1994). In mice, an activating point mutation in the FGFR3 decreases 

the rate of chondrocyte proliferation and lead to shortened and disorganized columns in 

their growth plates  (Naski, Colvin et al. 1998). Conversely, FGFR3 knockout leads to 

an opposite phenotype, with an increased rate of chondrocyte proliferation and length 
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expansion of chondrocyte columns (Colvin, Bohne et al. 1996; Deng, Wynshaw-Boris 

et al. 1996).  

Many other human skeletal dysplasias have been attributed to a specific mutation in the 

genes encoding FGF receptors (Muenke and Schell 1995). As an example, the bony 

syndactyly resulting from mutations in FGFR2 in Apert syndrome may result from 

defects in signaling in the mesenchymal condensation. The Apert mutations result in a 

loss of ligand binding specificity, which allow inappropriate activation of FGFR2 by 

the ligands (e.g. FGF7) expressed in the MSC condensation, as well as through 

inappropriate activation of FGFR2b by other ligands such as FGF2, FGF6, and FGF9 

(Yu, Herr et al. 2000; Yu and Ornitz 2001).  

However, the role of FGF signaling in the condensing mesenchyme is poorly 

understood. It is possible that FGF signaling induces the expression of SOX9 

(Murakami, Kan et al. 2000). Another possible mechanism of FGFs is by interacting 

with IHH/PTHrP signaling. Knockout of the FGFR3 gene increases Ihh expression and 

activating mutation of FGFR3 decreases its expression (Naski, Colvin et al. 1998; 

Ornitz and Marie 2002). Moreover, in vitro studies support the idea that FGFs inhibit 

chondrocyte proliferation by suppressing Ihh expression (Minina, Kreschel et al. 2002). 

FGFs expression pattern has been shown in chicken, mouse and human limb 

development (Peters, Werner et al. 1992; Szebenyi, Savage et al. 1995; Delezoide, 

Benoist-Lasselin et al. 1998). FGFR2 expression is the first observed in the MSC 

condensation center of the developing limb. At the condensation step, FGFR1 

expression is found in the periphery of the mesenchymal condensations. Later, FGFR1 

and FGFR2 expression persists in the perichondrium and periosteum. As the epiphyseal 

growth plate is formed, FGFR1 expression is initiated and maintained mainly in 

hypertrophic chondrocytes (Deng, Wynshaw-Boris et al. 1994). In contrast, FGFR3 

expression is first observed  in the condensation center,  as chondrogenesis begins, and 

later, is mainly expressed in the proliferating chondrocytes (Peters, Ornitz et al. 1993).  

On the contrary, several of the FGFs ligands are expressed in the developing 

endochondral bone.  Interestingly, expression of FGFs 7, 8, 17, and 18 has been 

observed in the perichondrium (Mason, Fuller-Pace et al. 1994; Finch, Cunha et al. 

1995; Xu, Liu et al. 2000; Liu, Xu et al. 2002), suggesting a possible paracrine signal to 

the growth plate. However, knockout studies reveal that only the lack of FGF18 results 

in abnormal chondrogenesis. FGF18 null mice show increased chondrocyte 
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proliferation, delayed ossification and decreased VEGF expression in the hypertrophic 

zone and perichondrium, suggesting that FGF18 contributes to the coordinated 

neovascularization of the growth plate, besides regulating chondrocyte proliferation 

(Liu, Lavine et al. 2007). In addition, the similarity between the phenotypes of FGF18 

and FGFR3 knockout mice suggest that FGF18 may be the natural ligand responsible 

for inhibition of proliferation through FGFR3. However, the more severe phenotype of 

FGF18 null mice suggests that FGF18 signals through other FGF receptors. It is 

possible that the redundancy of ligands (FGFs) combined with the multiple early effects 

of FGF receptors in bone development may compensate for individual FGFs mutations. 

Characterization of FGF and FGFR expression in microdissected growth plate cartilage 

from postnatal rat using real-time PCR detected high levels FGFR1-3, especially 

isoform C, whereas most FGFs were not detected or only detected at low levels in 

growth plate chondrocytes. FGF18 is expressed in perichondrium, and at lower levels 

in the hypertrophic and resting zones of the post-natal growth plate.  (Lazarus, Hegde et 

al. 2007). These findings thus suggest that FGFs, mainly produced by the 

perichondrium, act in a paracrine manner on FGFRs expressed on growth plate 

chondrocytes during postnatal life. Whereas FGFR1 and 3, which are negative 

regulators of chondrocytes, were expressed at higher levels in the hypertrophic zone; 

FGFR2 and 4, which are putative positive chondrocyte regulators, were expressed at 

earlier stages of differentiation, mainly in the resting zone (Lazarus, Hegde et al. 2007). 

Altogether, these findings point to the importance of FGF signaling in the control of 

post-natal growth.  Interestingly, temporal expression pattern showed down-regulation 

of FGFR2 and 4 in proliferative zone, and up-regulation of FGF 1, 7, 18 and 22 in 

perichondrium, suggesting that FGF signaling might play a role in the regulation of 

growth plate senescence and deceleration of longitudinal growth (Lazarus, Hegde et al. 

2007). 

1.4.2.6 WNTs (Wingless-type MMTV integration site family) 

The importance of Wnt signaling in skeletal development has been widely explored by 

several in vivo and in vitro studies (Macsai, Foster et al. 2008). At least 19 Wnts 

comprise a complex family of secreted cysteine-rich glycoproteins that interact with 

several receptors called Frizzled (Fzd) as well as co-receptors (Lrp5 and Lrp6). These 

Wnts are regulated by many antagonists, e.g. Secreted frizzled-related proteins (Sfrps) 

to finally activate different signaling pathways, including the canonical β-Catenin 
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pathway, and the non-canonicals calcium-releasing and JNK/planner cell polarity 

pathways. A key member of the canonical pathway, β-Catenin is an intracellular 

molecule involved in cell adhesion, which in the absence of Wnt signal is 

phosporylated and degraded, thus inhibiting gene transcription. Otherwise, activation of 

Wnt stabilizes β-Catenin, which then accumulates in the cytoplasm, migrates to the 

nucleus, heterodimerize with TCF/LEF transcription factors and ultimately mediates 

transcription of Wnt target genes.  

During bone formation, Wnt signaling inhibits chondrogenesis and enhances direct 

ossification, as seen by overexpression of Wnt14 and subsequent activation of the 

canonical β-Catenin pathway (Guo, Day et al. 2004; Day, Guo et al. 2005). Conversely, 

conditional inactivation of β-Catenin in undifferentiated mesenchymal cells using 

different mice models (Dermo1-Cre and Prx1-Cre) result in ectopic chondrocyte 

formation at the expenses of osteoblast differentiation (Hill, Spater et al. 2005; Hu, 

Hilton et al. 2005). Interestingly, Wnt signaling is also required during later 

chondrogenesis. Conditional knockout of β-Catenin in chondrocytes under the control 

of a type II collagen promoter (Co2a1-Cre) results in mice with short limbs, ectopic 

cartilage formation, but normal intramembranous ossification (Day, Guo et al. 2005). 

The generation of Col2a1-ICAT transgenic mice and therefore, decreased in β-Catenin 

signaling, resulted in viable mice with normal size at birth followed by progressive 

growth retardion (Chen, Zhu et al. 2008). Col2a1-ICAT transgenic mice showed 

reduced chondrocyte proliferation and differentiation, and an increase in chondrocyte 

apoptosis, leading to decreased widths of the proliferating and hypertrophic zones, 

delayed formation of the secondary ossification center, and reduced skeletal growth. 

These findings show that Wnt/ β-Catenin canonical pathway is essential throughout all 

stages of bone formation. 

During intramembranous ossification, Wnt signaling in the condensation is high, 

inhibits chondrocyte differentiation and also promotes osteoblast differentiation. 

During endochondral ossification, however, Wnt signaling in the condensation is kept 

low meaning that only chondrocytes can differentiate. Later, Wnt signaling is again up-

regulated in the periphery of cartilage, such that osteoblasts will differentiate, in order 

for the normal endochondral ossification to occur. One of the suggested mechanisms to 

control Wnt signaling in chondrogenesis is its inhibition by SOX9. Infection of 

mesenchymal progenitors in micromass culture with SOX9 or Wnt14 using adenovirus 

result in increased cartilage nodule formation at the outer rim of micromass culture 
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infected with SOX9 only; whereas Wnt14 inhibits cartilage nodule formation. 

Interestingly, co-infection with Sox-9 rescued cartilage nodule formation inhibited by 

Wnt14 to a large extent (Topol, Chen et al. 2009). Additional experiments in the same 

study show that SOX9 enhance β-catenin phosphorylation and its subsequent 

degradation, and thus inhibit Wnt signaling (Topol, Chen et al. 2009). In another 

interesting study, Wnt signaling has been implicated as downstream component of Ihh 

signaling, a master regulator of chondrocytes differentiation (Day and Yang 2008). 

Study in double mutant mice using COL2A1-Cre model with floxed alleles for Ptch1 

and β-catenin, hedgehog (Hh) signaling is cell autonomously activated, whereas β-

catenin is cell autonomously inactivated in developing long bones. Hedgehog (Hh) 

signaling was increased in the entire skeletal, especially in the perichondrium and 

articular cartilage, as well as PTHrP expression in the articular cartilage of these mutant 

mice (Mak, Chen et al. 2006). In the same study, bone formation was blocked in the 

perichondrium of the double mutant Ptch1; β-catenin mice, as in β-catenin single 

mutant mice, although Hh signaling was up-regulated (Mak, Chen et al. 2006). 

Altogether, these findings suggest that Wnt/β-catenin signaling is not required for Hh 

signaling itself, and acts downstream of Hh signaling in promoting bone formation.  
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2 AIMS OF THE THESIS 

The main goal of this thesis is to identify and explore new genes and intrinsic 

molecular mechanisms that are important for the spatial and temporal regulation of 

proliferation and differentiation of growth plate chondrocytes. We therefore aimed to: 

1. Identify gene expression changes that occur during the sequential differentiation 

of growth plate chondrocytes between distinct zones, as well as during growth 

plate senescence (Paper I); 

2. Study genes and pathways identified in previous study in order to explore their 

importance for temporal and spatial control of chondrocyte differentiation and 

proliferation within the growth plate (Papers II, III); 

3. Verify the intrinsic regulation of growth plate senescence by combining 

growth-inhibiting conditions and the study of structural, functional and gene 

expression changes within postnatal growth plate cartilage (Paper IV); 

4. Develop an in vitro model for growth plate chondrogenesis that allow for 

transient transfection of primary growth plate chondrocytes (Paper V). 

5. Identify developmentally regulated microRNAs and explore their role in growth 

plate chondrogenesis and senescence (Paper V);  
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3 ANIMAL & METHODS 

 
The following methods were used and will be briefly discussed. For specific 

procedures, please consult the individual papers: 

o Animal Model (Paper I-V) 

o Microdissection of the growth plate (Papers I- V) 

o Microarray analysis (Papers I and V) 

o Real-time qRT-PCR (Papers I-V) 

o In Situ hybridization of postnatal growth plate (Paper I) 

o Culture of Primary Chondrocytes (Paper V) 

o Transient Transfection (Paper V) 

o Transfection Efficiency Assessment (Paper V) 

o Proliferation assay - BrdU labeling followed by detection using ELISA 

(photometry) assay (Paper V) 

o Apoptosis analysis by using an ELISA-based method (photometry) assay 

(Paper V) 

 

3.1 ANIMAL MODELS 

We have mainly used rodents in the studies included in this thesis.  Sprague Dawley 

rats (Paper I, III and IV) and C57BL/6 mice (Paper II and V) were sacrificed to get 

their proximal tibial growth plate cartilage. In paper IV, we have used other two 

models with growth-inhibiting conditions. All studies were approved by local ethic 

committees.  

1. Normal and castrated rodents: Sprague Dawley rats (Paper I, III and IV) and 

C57BL/6 mice (Paper II and V) were sacrificed at 1-week-old to get epiphyseal 

proximal tibia for subsequent manual microdissection of individual zones of the 
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growth plate. For later time points, to avoid the interference of sex steroids, the 

animals were castrated before pubertal development starts (van Buul and Van den 

Brande 1978; Hunziker and Schenk 1989).  

2. Hypothyroidism induced rats (Paper IV): Growth of Sprague Dawley rats were 

inhibited in newborn male pups by introducing propylthiouracil (PTU) into 

drinking water of the mother from birth of the pups until 5-weeks-old of age, when 

we discontinued the treatment and allowed the hypothyroid rats to recover. The 

PTU treated pups were not weaned during treatment due to the fact that they are 

not mature enough to support their own nutritional needs during hypothyroidism 

state. The pups from lactating mothers not receiving PTU were used as controls 

and weaned at the normal age of 3-weeks-old. In addition, to avoid the interference 

of sex steroids in growth development, puberty was delayed by depot leuprolide 

acetate injections every 3 weeks. Depot leuprolide acetate is a long-acting 

gonadotropin-releasing hormone agonist that down-regulates gonadotropin 

secretion and thus gonadal steroid production (Ogawa, Okada et al. 1989). 

3. Tryptophan deficient (Trp-) rats (Paper IV): Sprague Dawley rat growth was 

inhibited by providing a Trp- diet to the lactating mother from birth of the pups 

until they reached 4-weeks of age. Then, treatment was suspended and the animals 

were allowed to recover. Male pups of not-treated mothers were used as a control.  

 

3.2 MICRODISSECTION OF GROWTH PLATE (PAPERS I-V) 

Manual microdissection of growth plate is a reliable and accurate technique that 

allows the study of individual growth plates of single animals (Nilsson, Parker et al. 

2007). Briefly, cartilaginous growth plates of Sprague-Dawley rats or C57BL/6 mice 

were excised from proximal tibia. To dissect distinct zones of growth plate, 7-days-

old animals were used. At this age, the growth plate is relatively tall and dissection of 

individual zones based on histological characteristics is more accurate and give 

enough amount of material to extract tRNA for the study of individual zones from a 

single animal. Frozen longitudinal sections (40-60 µm) of proximal tibial epiphyses 

were mounted on Superfrost Plus slides (Fisher Scientific, Chicago, IL, USA). Pre-

treatment of the slides with fixation and eosin staining was performed. Using an 

inverted microscope, razor blades, and hypodermic needles, growth plate sections, 
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under a xylene droplet, were separated based on histological hallmarks into distinct 

zones (Fig. 5).  

 

Fig. 5. Growth plate microdissection. Representative photomicrograph of microdissected proximal 
tibial growth plate from 1-week-old rat. The 60µm-thick longitudinal frozen sections were cut into 
resting zone, proliferative zone, prehypertrophic region and hypertrophic zone. In the section 
depicted, cuts were made, but the cartilage was left in place on the microscope slide. 

 

In order to minimize cross-contamination between zones, the uppermost part of one 

and the lowest part of next zone was discarded. Metaphyseal bone can be collected 

from a region of trabecular bone beginning approximately 100 µm distal to the 

hypertrophic zone.  For each zone, tissue dissected from both proximal tibias of one 

animal (18–25 sections) was pooled prior to RNA isolation. 50-200 ng of total RNA 

was extracted from growth plate of single animals, and then used for microarray or 

real-time PCR analysis (Paper I and V). 

 

3.3 MICROARRAY ANALYSIS (PAPERS I, V) 

Microarray is a high-throughput technique that allows the expression quantification of 

thousands of genes simultaneously. This thesis included two papers (Papers I and V) 

that use microarray analysis, which pursue the concept of finding predictive gene 

groups and signaling pathways from microarray data, which will generate likely 

hypothesis for the regulation of proliferation and differentiation of chondrocytes 
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within growth plate. This concept is motivated from the biological assumption that a 

few gene expression signatures are most accurate for phenotype discrimination. 

Furthermore, paper V also presents some innovative ideas resulting from the profiling 

of miRNAs and predicted target genes important for temporal regulation of 

chondrogenesis.  

3.3.1  mRNA Expression Microarray   

Expression quantification of thousands of genes is performed simultaneously by 

measuring the hybridization from the tissue of interest (e.g. growth plate and 

metaphyseal bone) to probes placed on a small glass slide. We used samples from 

single animals from the same litter, which minimize the variation of biological 

components and facilitate the interpretation of the results.  

For gene expression analysis (Paper I), we have used Affymetrix platform and the 

GeneChip 3´ In Vitro Transcription (IVT) Expression. Reverse transcription-IVT 

(RT-IVT) process is considered the gold standard for target preparation for gene 

expression analysis (Shi, Reid et al. 2006). The GeneChip arrays have a system where 

Oligonucleotides probes complementary to each corresponding sequence are 

synthesized in situ on the arrays. Poly-A controls (lys, phe, thr and dap) monitor the 

target labeling process from start to end, as sensitivity indicators of the entire target 

labeling process. The entire process is based upon linear RNA amplification and 

employs T7 in vitro transcription technology. For visualization of the GeneChip® 3’ 

IVT Express Protocol process, see figure 6.  

Briefly, total RNA (50-100ng) undergoes reverse transcription to synthesize first-

strand cDNA, which is primed with T7 oligo(dT) primer to synthesize cDNA 

containing a T7 promoter sequence.  This cDNA is then converted into a double-

stranded DNA template for transcription. The reaction employs DNA polymerase and 

RNase H to simultaneously degrade the RNA and synthesize second strand cDNA. In 

vitro transcription synthesizes cRNA with IVT labeling and incorporates a biotin-

conjugated nucleotide. In the amplification step, Master Mix generates multiple 

copies of biotin-modified cRNA from the double stranded cDNA templates. The 

cRNA is then purified to remove unincorporated NTPs, salts, enzymes, and inorganic 

phosphate to improve the stability of the biotin-modified cRNA. 

 



 

 

34 

 

 

Fig. 6. Overview of the GeneChip 3’ OVT Express Kit Labeling Assay 

Fragmentation of the biotin-labeled cRNA prepares the sample for hybridization onto 

GeneChip 3’ IVT expression arrays. After hybridization, the arrays are washed and 

stained using a Fluidics Station FS-450 (Affymetrix) following the EukGE-WS2v5 

protocol. The distribution of fluorescent material on the processed array is determined 

using the Affymetrix 3000 GeneArray laser Scanner with the 7G upgrade. Image 

inspection is performed manually immediately following each scan. All array 

scanning and data processing on the Affymetrix system is then performed with 

GeneChip Operating System (GCOS) software.   

3.3.2  miRNA Expression Microarray  

For miRNA microarray (Paper V), we used Agilent platform (Santa Clara, CA), which 

contain 20 probes targeting each of 567 mouse and 10 viral miRNAs from the Sanger 

database v10.1 (miRBase/ TargetScan, 2010). Labeling and hybridization of total RNA 

samples were performed according to the manufacturer's protocol. 100 ng total RNA 

was used as input into the labeling reaction, and the entire reaction was hybridized to 
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the array for 20 hours at 55°C. In combination with the miRNA microarray probe 

design, Cyanine 3-Cytidine bisphosphate (pCp) reagent selectively labels and 

hybridizes mature miRNAs. Use of these reagents ensures consistent results. Slides 

were scanned by using the Agilent DNA Microarray Scanner (Agilent), and results 

were extracted using Agilent Feature Extraction software (v10.5.1).  

3.3.3   Microarray Data Analysis  

Data analysis of microarray data is simplified by the use of bioinformatics tools, class 

prediction tools and higher stringency to select true effect observed by the technique. In 

the first paper, statistical and bioinformatic analysis of gene expression microarray 

data were performed by Partek Genomics Suite™ 6.3 (Partek Inc., St. Louis, MO). 

Probe-level data were pre-processed, including background correction, normalization, 

and summarization, using robust multi-array average (RMA) analysis (Bolstad, 

Irizarry et al. 2003; Irizarry, Hobbs et al. 2003). ANOVA analysis was performed for 

spatial and temporal comparisons on log-transformed data using Partek Pro software 

(Partek Inc.). In paper V, normalization and data analysis was performed by using 

GeneSpring software (GX11, Agilent, Santa Clara, CA). 

In order to identify functional pathways implicated in the spatial and temporal 

regulation of growth plate chondrocytes, Ingenuity Pathways Analysis Software 7.0 

(Ingenuity Systems Inc., Redwood City, CA) was used. Furthermore, validation of 

microarray findings was performed by real-time quantitative PCR (paper I and V) and 

in situ hybridization (paper I). 

3.4 REAL-TIME qPCR (PAPERS I-V) 

Real-time qPCR is a highly sensitive and specific method for detection of gene 

expression by logarithmic amplification (PCR) and simultaneous quantification of 

specific cDNA sequences, which reflects the concentration of specific transcripts in the 

sample analyzed. In this thesis, we have used real-time RT-PCR to study the expression 

of specific genes (Papers II, III, IV) and miRNAs (Paper V) found to be important in 

the regulation of growth plate chondrocytes based on previous microarray findings. 

Briefly, by using a DNA polymerase enzyme that is tolerant to elevated temperatures, 

mRNA is copied to cDNA by reverse transcriptase and random hexamer oligoprimers. 

The cDNA is more stable than RNA and furthermore allows amplification by DNA 
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polymerase. Interestingly, the cDNA mirror the RNA content of the tissue analyzed, 

and therefore the converted mRNA contains merely exons, since the introns are spliced 

away in mature mRNAs.  

The basic idea of the technique is that the more abundant a particular mRNA is in the 

sample, and thus cDNA after reverse transcription, the earlier it will reach a threshold 

during repeated cycles of amplification. In contrast to semi-quantitative PCR that only 

provide information of amplification product amount at the end of the reaction, q-PCR 

assess the amount of synthesized amplification product in every amplification cycle and 

relative abundances of each transcript can be assessed during the logarithmic phase of 

amplification. The data collection is fluorescence based. Two commonly used 

chemistries for detection are TaqMan probe and SYBR green. SYBR green directly 

binds to double-stranded DNA (amplification products) and emits light. As SYBR 

green dye binds to any double-stranded DNA molecular, including primer-dimers and 

other non-specific reaction products, it may lead to an overestimate of the PCR product.  

On the other hand, TaqMan probe is more precise to detect gene expression. Briefly, 

TaqMan probe are oligonucleotides with a high energy reporter dye on the 5’ end and 

low energy quencher dye at the 3’ end. Before reaction, two dyes sit together by which 

the emission of reporter dye is suppressed by the quencher dye. During PCR when 

DNA replication reaches to the TaqMan probes bonded on template, the 5’-nuclease of 

Taq DNA polymerase enzyme cleaves the probe. The release of reporter from quencher 

increases fluorescent emission of reporter. The signal increases in direct proportion to 

the amount of PCR product in the reaction.  

Since not all tissues samples have the exact same rate of overall gene transcription and 

the same amount of cell contents, normalization against a constantly expressed 

housekeeping gene is commonly performed and mRNA relative quantification is 

analyzed. In our studies, we quantified the relative expression from all samples against 

the housekeeping gene 18S ribosomal RNA (18S rRNA) for gene expression studies; 

and the small nucleotide202 (sno202) for miRNA study, which have previously been 

shown to be constantly expressed in most tissues (Wong L 2007), confirmed in growth 

plate samples . Real-time qPCR was performed as it is described in each paper.  
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3.5 IN SITU HYBIDRIZATION OF POSTNATAL GROWTH PLATE 

(PAPER I) 

In situ hybridization was performed using frozen sections of growth plate cartilage of 

1-week-old rats hybridized to 35S-labeled riboprobes as described by Zhou et al 

(Zhou, Chin et al. 1991). Briefly, cDNA from growth plate was PCR-amplified by 

two sequential amplifications using specific primers that contain either a T7 promoter 

or an SP6 promoter (Divjak, Glare et al. 2002). Next, single stranded 35S-labeled 

riboprobes for in situ hybridization were produced by in vitro transcription using T7 

or SP6 RNA polymerase α-35S labeled nucleotides. T7 polymerase was used for sense 

probes and SP6 polymerase for antisense probes. Riboprobes were purified by Micro 

Bio-Spin Columns P-30-Tris-RNase free. 35S incorporation was assessed by 

comparing radioactivity before and after the column purification, by liquid 

scintillation counting. Hybridization of pre-treated frozen sections to 35S-labeled 

riboprobes was performed as described by Zhou et al (Zhou, Chin et al. 1991). The 

sections were then counterstained with hematoxylin and eosin. Silver grains were 

visualized by scanning the slides with ScanScope CS digital scanner (Aperio 

Technologies, Inc.) under bright field microscopy. The corresponding sense riboprobe 

was used as a negative control for each antisense probe. 

 

3.6 QUANTITATIVE HISTOLOGY (PAPERS IV) 

Masson Trichrome-stained sections of paraffin embedded samples of growth plate 

from proximal tibia were used for quantitative histology using a ScanScope CS digital 

scanner (Aperio Technologies, Inc. Vista, CA). Measurements were taken as 

previously described (Marino, Hegde et al. 2008). Height of individual zones and 

whole growth plate, columns density and the height of the terminal hypertrophic 

chondrocyte lacuna (the intact lacuna closest to the metaphyseal bone) were assessed 

by a blinded observer to the age and treatment group. Overall growth plate height was 

measured from the margin of the metaphyseal bone to the margin of the epiphyseal 

bone; resting zone height, measured from the edge of the margin of the epiphyseal bone 

to the first cell of a proliferative column; hypertrophic zone height, measured from the 

margin of the methaphyseal bone to the last cell bigger or equal to 10 μm; proliferative 
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zone height, measured from the first cell minor to 10 μm to the first resting 

chondrocytes; the number of resting zone chondrocytes, assessed as the number of cells 

per 200 μm growth plate width (measured parallel to the epiphyseal margin); column 

density, assessed as the number of hypertrophic columns per 500 μm growth plate 

(measured parallel to the metaphyseal margin); and the height of the terminal 

hypertrophic chondrocyte lacuna (the intact lacuna closest to the metaphyseal bone). 

Heights were measured parallel to the chondrocyte columns in 3 areas of each growth 

plate section and averaged.  Column density was calculated in 2 areas per growth plate 

section. The number of proliferative and hypertrophic cells was counted in 3-4 intact 

columns per growth plate. Hypertrophic chondrocytes were operationally defined by a 

height ≥10 μm. The terminal hypertrophic cell height was measured in 8-10 different 

columns per growth plate section. For each animal, 3 different growth plate sections 

were analyzed and then all measurements from that animal were averaged. 4-5 animals 

were studied per treatment and time point. All histological measurements were 

performed in the central two-thirds of the growth plate sections to avoiding regions 

close to the perichondrium  

 

3.7 PRIMARY CULTURE OF GROWTH PLATE 

CHONDROCYTES (PAPER V) 

The use of primary cultures of growth plate chondrocytes offered important 

advantages for our studies. We needed an in vitro model that allowed for efficient 

transfection of cells and with relevance to in vivo growth plate chondrogenesis. 

Therefore, we opted for primary chondrocytes cultures.. Primary chondrocytes retain, 

at least partly, their chondrogenic phenotype and signaling pathways involved in its 

regulation, thereby providing information of relevance to the chondrogenesis, and 

experimental conditions can be easily controlled. In addition, we have used 

chondrocytes mainly from the resting zone, aiming to study proliferation and 

differentiation of young chondrocytes, without the confusing factor of already 

differentiated hypertrophic chondrocytes. In order to obtain  resting zone, we used 

young mice (3-5 days-old), since their growth plate is taller, the secondary 

ossification center is absent, and chondrocytes from the epiphyseal and resting zone 

represent relatively large portion of the entire growth plate. To increase the number of 
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cells obtained, we dissect cartilage growth plate from proximal tibia, distal femur and 

distal tibia from each animal. Briefly, growth plates were dissected aseptically and 

digested in 0.3% collagenase type IA. The released cells were resuspended in 

Dulbecco's modified eagle medium/Hams F12, 10% fetal calf serum (FCS), 1% 

penicillin (100 U/ml)/ streptomycin (100 μg/ml), sodium pyruvate (100 μg/ml) and 50 

μg/ml ascorbic acid, and then plated at a density of 105 cells/cm2 in 96-well-plates.  

 

3.8 TRANSIENT TRANSFECTION OF miRNAs (PAPER V) 

3.8.1  Transfection of Primary Chondrocytes 

Transfection is the process of introducing genetic content into a cell by means other 

than viral transduction, such as via electroporation or liposome-mediated fusion. The 

technique has been of exceptional value for functional studies in cell lines or primary 

cells, in which the researcher can modify the expression of a particular gene or 

miRNA through inhibition or overexpression, and observe possible phenotypic 

effects on the cell, such as proliferation, cell death and pure morphological changes. 

For most applications of transfection, it is sufficient if the transfected gene is only 

transiently expressed. Since miRNA introduced in the transfection process only needs 

to reach the cytoplasm and their effects on cell phenotype may be analyzed after 24 

hours, this type of transfection is adequate for our study. We performed transient 

transfection of precursor (gain-of-function) or inhibitor miRNAs (knock-down) into 

primary murine chondrocytes by using Lipofectamine 2000, a lipid-based solution 

that transfers the construct miRNA into the cells by merging with the cell membrane. 

Briefly, primary chondrocytes were transfected by incubation of cells in 100nM 

precursors (pre-miR), inhibitors (anti-miR), or negative control (nonspecific) 

oligonucleotides miRNAs by using Lipofectamine 2000 (Invitrogen) in serum-free 

media (Opti-MEM I). This liposome mediated transfection study is highly efficient, 

with a transfection rate between 80 and 90%, and fairly non-toxic to the primary 

murine chondrocytes.  

3.8.2   Transfection Efficiency Assessment 

Fluorescence-Activated Cell Sorting (FACS) has a variety of applications, and was 

used in paper V for assessment of labeled-miRNAs transfected cells. FACS is a form 
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of flow cytometry, where cells pass through a laser in a hydrodynamically focused jet 

of fluid. As the cells pass through the light beam, they scatter the light depending on 

the physical and chemical characteristics of the cell. These characteristics are 

recorded for each cell by detectors and provide a range of information about the 

observed cells. Cells marked with fluorescent labels emit light when passing through 

the beam, and can be sorted into different containers based on the presence or absence 

of fluorescent signals. Sorting is done though breaking the hydrodynamically focused 

fluid jet containing the cells into droplets immediately following the measuring 

station. A charge is placed on each droplet depending on its fluorescent status, and 

differentially charged droplets are deflected in an electrostatic field, thereby sorting 

them into different fractions. 

Transfection efficiency of Cy-3-labeled negative-controls for pre-miR and anti-miR 

miRNAs (Ambion) was found to be between 80-90% in repeated experiments. After 

one wash with PBS, cells were trypsinized, pelleted and resuspended in PBS 

containing 1% FCS. Cell cytometry was performed using a FACScan cell analyzer. 

WinMD12.8 was used for analyses of FACS data.  

Furthermore, effective delivery and activity of positive control anti-miR and pre-miR 

was detected by real-time PCR quantification of their respective targets.  Endogenous 

Let-7 miRNA negatively regulates HMGA2, a ubiquitously expressed nonhistone 

chromatin protein (Lee and Dutta 2007). Pre-miR-1 miRNA precursor effectively 

down regulates the expression of Twf1 (twinfilin, actin-binding protein 1) at the 

mRNA level (Lim, Lau et al. 2005). In our cells, transfection with anti-let-7-miR 

increased HMGA2 mRNA abundance by 100%, while transfection with  pre-miR-1 

down-regulated Twf1 gene expression by 70%. Altogether, the data confirm that the 

developed protocol for transfection of primary growth plate chondrocytes results in 

efficient transfection and that the model is adequate and may be used to explore the 

functional role of selected miRNAs in growth plate chondrogenesis.  

 

3.9 PROLIFERATION ASSAY (PAPER V)  

In paper V, incorporation of bromodeoxyuridine (BrdU, 10uM) into newly 

synthesized DNA of proliferating chondrocytes was measured by ELISA 

(photometry) to quantify cell proliferation. Bromodeoxyuridine (BrdU) is an analogue 
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of thymidine and competes with thymidine for incorporation into the forming DNA.  

Differences in BrdU incorporation by proliferating chondrocytes is reliably recorded 

by a microplate ELISA reader and comparable between different experiments.  

 

3.10  CELL DEATH ELISA (PAPER V) 

Cell death may occur by two mechanisms: apoptosis and necrosis, and both types 

have their own specific and distinct morphological and biochemical characteristics. 

During chondrogenesis, apoptosis is the main mechanism of cell death, especially in 

the hypertrophic zone. In our study, for detection of apoptosis in cultured transfected 

chondrocytes, we used Cell Death ELISA plus (Roche® Applied Science, 

Indianapolis, IN), which detects cytoplasmic histone-associated DNA fragments 

(mono- and –oligonucleassomes) by photometric enzyme immunoassay. The assay 

detects nucleasomes (histone complexed DNA fragments) in the cytoplasm of treated 

cells with the use of monoclonal antibodies against histone and single-stranded DNA. 
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4 RESULTS AND DISCUSSION 

 

4.1 MARKERS FOR CHONDROCYTES DIFFERENTIATION 

AND GROWTH PLATE SENESCENCE (PAPER I)  

To obtain an overall, unbiased assessment of how gene expression is regulated as 

chondrocytes undergo spatially-associated differentiation and temporally-associated 

senescence, we used microdissection of postnatal rat growth plates into their constituent 

zones combined with microarray analysis. Here, we report the overall results of the 

microarray study, using bioinformatic approaches to identify functional pathways and 

explore large-scale patterns in gene expression that may regulate the processes of 

postnatal chondrogenesis, and therefore identify specific gene products that may be 

used as molecular markers for the spatial zones and for temporal development.  

In the transition from the resting to the proliferative zone, expression of 677 genes was 

upregulated and expression of 631 genes was downregulated (with P < 0.01 by 

ANOVA, Table1A). Functional pathways most implicated in this transition included: 

vitamin D receptor / retinoid x receptor (VDR/RXR) activation, platelet-derived growth 

factor (PDGF) signaling, BMP signaling, and notch signaling (all P < 0.05, Table1A).   

In addition, we detected biological functions most strongly implicated in this step of 

differentiation, such as: cellular development, cellular growth and proliferation, cell-to-

cell signaling and interaction (all P < 0.0001, Table1A), all of which are consistent with 

the known biological changes occurring in this transition. These differences in 

expression between zones represent the changes in expression that occur as 

chondrocytes differentiate from the resting to the proliferative and then to the 

hypertrophic state. BMPs have already been shown to play an important regulatory role 

in the growth plate (De Luca, Barnes et al. 2001; Pogue and Lyons 2006; Nilsson, 

Parker et al. 2007),  including a role in differentiation of mesenchymal cells into 

chondrocytes (Solomon, Berube et al. 2008), of proliferative chondrocytes into  

hypertrophic chondrocytes (Kobayashi, Lyons et al. 2005; Pogue and Lyons 2006; 

Solomon, Berube et al. 2008) and proliferation of resting zone chondrocytes (De Luca, 

Barnes et al. 2001).  PDGFs have been shown to stimulate proliferation of cultured 

growth plate chondrocytes (Hiraki, Inoue et al. 1988; Wroblewski and Edwall 1992; 

Bulman, Iannotti et al. 1995; Olney, Wang et al. 2004; Kobayashi, Lyons et al. 2005), 

but there is less information about their role in vivo.  Members of the notch family and 
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their receptors are expressed by hypertrophic chondrocytes (Hayes, Dowthwaite et al. 

2003), but little is known about their role in growth plate chondrocyte differentiation. 

Vitamin D receptor ablation in mice causes important growth plate abnormalities but 

this appears to be related to the resulting abnormal mineral homeostasis (Demay 2006), 

and at least some of the direct effects of vitamin D on the growth plate appear not to be 

mediated by the nuclear vitamin D receptor.  

 
Table 1. Bioinformatic analysis of the genes changing between zones,  from: A) resting zone to 
proliferative zone, and from: B) proliferative zone to hypertrophic zone in the growth plate cartilage of 1 
wk old rats using the computer program Ingenuity Pathway Analysis 7.1. 
 

Next, we identified that expression of 1717 genes was upregulated and expression of 

1625 genes was downregulated (with P < 0.01 by ANOVA, Table 1B) in the transition 

from the proliferative to the hypertrophic zone. Biological functions most strongly 

implicated in hypertrophic differentiation included: cellular growth and proliferation, 

cellular movement, cell death, cell cycle, and DNA replication, recombination, and 

repair (all P < 10-8, Table1B). Functional pathways that were implicated in this 

transition included: p53 signaling, cell cycle: G2/M regulation, cell cycle: G1/S 

regulation, ephrin receptor signaling, oncostatin M signaling, and BMP signaling (all P 

< 0.05, Table1B). P53 may play a role in apoptosis of growth plate chondrocytes [24]. 
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Ephrin receptors, which interact with membrane-bound ligands causing bidirectional 

signaling, have been implicated in bone remodeling [25] but not, to our knowledge, in 

growth plate biology previously. Similarly, Oncostatin M, a pleiotropic member of the 

interleukin-6 cytokine family[26], has not, to our knowledge, previously been 

implicated in growth plate biology. 

Changes associated with growth plate senescence were assessed by comparing gene 

expression in growth plate cartilage of 3-week-old versus 12-week-old rats.  With age, 

expression of 1221 genes was upregulated and expression of 1046 genes was 

downregulated (with P < 0.01 by ANOVA, Table2). Biological functions most strongly 

implicated in growth plate senescence included: small molecule biochemistry, cell 

death, cell morphology, cellular growth and proliferation, cellular function and 

maintenance (all P < 0.0001, Table2). Functional pathways that were implicated in 

growth plate senescence included: eisosanoid signaling, VDR/RXR activation, p38 

mitogen-activated protein kinase (MAPK) signaling, and Wnt/β-catenin signaling (all P 

< 0.05, Table2).  

 

 
Many of the detected pathways have previously been implicated in growth plate 

chondrocyte regulation (Vortkamp, Lee et al. 1996; Rosado, Schwartz et al. 2002; 

Table 2. Senescence (3-wk vs 
12-wk) of growth plate. 
Bioinformatic analysis of the 
genes changing in the 
proliferative zone from 3 wk to 
12 wk old rats using the 
computer program Ingenuity 
Pathway Analysis 7.1. 
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Agoston, Khan et al. 2007; Wang, Shao et al. 2007; Chen, Zhu et al. 2008)  generally, 

but not specifically in the programmed loss of function and other senescent changes 

that occur during postnatal life. Furthermore, comparison of gene expression changes 

during chondrocyte differentiation and senescence did not reveal a substantial 

overlap, thus suggesting that the mechanisms that block proliferation as chondrocytes 

hypertrophy is different from those that restrict proliferation with increasing age. 

In addition, we have identified potential markers that show greater than 10-fold 

specificity for each of these zones. Some, but not all, of these potential markers have 

known or suspected roles in chondrocyte biology. For the resting zones, the highest-

ranking marker was secreted frizzled-related sequence protein 5 (Sfrp5), which showed 

mRNA levels in the resting zone that was 15-fold higher than in proliferative zone and 

60-fold higher that in the hypertrophic zone (see Fig. 1). 

 
Fig. 7. Spatial Markers for Growth Plate Senescence. Changes in gene expression (mean ± SEM) 
of spatial markers across the tibial growth plate of 1-week-old rats. (A) The relative expression 
of mRNA in each zone was measured by expression microarray (Affymetrix Rat Genome Array 
230 2.0). (B) The relative expression of Sfrp5, Pcp4, Efemp1, Lrrc17, Pcdh17, and Prelp was 
verified using quantitative real-time PCR. RZ, resting zone; PZ, proliferative zone; HZ, 
hypertrophic zone.  

The highest-ranking marker identified for the proliferative zone was growth 

differentiation factor 10 (Gdf10), which is a member of the BMP family and which 

showed mRNA levels in the proliferative zone that were 16-fold higher than in the 
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resting zone and 110-fold higher than in the hypertrophic zone (Fig. 7). And, for the 

last, the hypertrophic zone, the two highest-ranking markers were tissue non-specific 

alkaline phosphatase (Alp1) and collagen X (Col10a1), two widely used markers for 

hypertrophic chondrocytes (Fig. 7). Other candidate markers for all zones are shown in 

Fig. 7B.  To further confirm our findings, the localization of several spatial markers in 

1-week-old growth plate was studied by in situ hybridization (Fig. 8). The identified 

mRNAs are likely to prove useful as markers for the resting and proliferative zones in 

studies using RNA-based methods, as we showed using in situ hybridization and real-

time qPCR. 

 

Fig. 8. mRNA expression of Sfrp5, Gdf10, and Prelp in growth plate cartilage of 1-week-old rats by 
in situ hybridization. The left hand panel in each row shows the proximal tibial at low 
magnification. The other panels show high magnification views of resting zone (RZ), proliferative 
zone (PZ), and hypertrophic zone (HZ) taken from within the rectangular area indicated in the 
corresponding left hand panels. 

 

In addition to spatial regulation, we identified multiple genes that showed large 

increases in expression with age and other genes that showed large decreases at either 

3-wks (youth markers) or 12-wks (aged markers) (Fig. 9). For the young growth 
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plate, the highest-ranking marker was insulin-like growth factor 2 (IGF2), which 

showed mRNA levels 82-fold higher at 3-wks than at 12-wks. For the old growth 

plate, the highest-ranking marker was Pycard (PYD and CARD domain containing), 

which showed mRNA levels increased 9-fold from 3-wks to 12-wks of age (Fig.  3). 

The expression level of these genes may be useful indicators of the maturational state 

and residual proliferative capacity of the growth plate chondrocytes, and therefore can 

be employed to study processes that delay (Marino, Hegde et al. 2008) or accelerate 

(Weise, De-Levi et al. 2001) growth plate senescence. Whether the proteins encoded 

by these mRNAs will prove useful as markers using immunohistochemistry or 

western blot analysis remains to be determined.  

 
 

 

 

Although bioinformatic analysis of expression microarray findings can identify 

important functional pathways involved in a physiological, pathological, or 

pharmacological process, this approach is neither completely sensitive nor specific. 

Therefore, the findings in the current study can only be considered as hypothesis 

generating. For some of the novel pathways implicated in growth plate senescence, 

Fig. 9. Temporal Markers 
for Growth Plate 
Senescence. Changes in 
gene expression 
(mean±SEM) of senescence 
markers in the proliferative 
zone of 3-, 6-, 9-, and 12-
week-old rats. Proliferative 
zones of the growth plate 
cartilage were 
microdissected. (A) The 
relative expression of 
mRNA at different ages was 
measured by expression 
microarray (Affymetrix Rat 
Genome Array 230 2.0). 
The data was background 
corrected and normalized 
using the MAS5 statistical 
algorithm. (B) The relative 
expression of Frzb, Fgl2, 
Matn1, Irx4, Syt8, and 
Tm4sf1 was verified using 
quantitative real-time PCR 
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such as Wnt signaling, and genes implicated in growth regulation (e.g. imprinted genes, 

data not shown); additional studies were performed to confirm the expression findings 

using independent methods and to investigate their functional role in postnatal 

chondrogenesis. 

 

4.2 ROLE OF WNTs IN POSTNATAL GROWTH PLATE (PAPER 

II) 

Wnt/β-catenin signaling was one of the most implicated pathways in the 

developmental program of growth plate senescence revealed in our microarray 

analysis (Paper I). Although the importance of Wnt signaling in chondrogenesis is 

well established, little is known about which specific Wnts are responsible for these 

effects. This gap in our understanding is particularly evident in the postnatal growth 

plate, since most previous work has focused on the embryonic skeleton. We therefore 

examined the expression profile of Wnt family members in distinct zone of growth 

plate and metaphyseal bone, by using microdissection followed by real-time qPCR, a 

quantitative method with greater sensitivity and specificity than previous techniques.  

Of the 19 known members of the Wnt family, only six, Wnts -2b, -4, -5a, -5b, -10b, 

and -11, were clearly detected both in whole growth plate and individual zones (Fig. 

10). Although ours is the first study to investigate extensively Wnt expression in the 

postnatal mammalian growth plate, some of these members of the Wnt family, Wnts -

4, -5a and -5b, had previously been implicated in embryonic mammalian cartilage, 

whereas Wnts -2b, -10b, and -11 had not been implicated in the regulation of the 

mammalian growth plate at any stage of development. Interestingly, of those six 

Wnts, three (Wnts -2b, -4, and -10b) signal through the canonical Wnt/β–catenin 

pathway and three (Wnts -5a, -5b, and -11) signal through the noncanonical, calcium 

pathway. 

In addition, all detected Wnts presented spatial expression remarkably similar (Fig. 

10). As the chondrocytes passed into the proliferative state and the prehypertrophic 

state, expression of these Wnts appeared to increase. As the cells underwent terminal 

differentiation to the hypertrophic state, Wnt expression tended to decline. This 

overall pattern of gene expression is broadly consistent with previous studies in the 

mouse embryo suggesting that Wnts that signal through both the canonical and 
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noncanonical pathways modulate chondrocyte hypertrophic differentiation. 

Specifically, Wnts -4, -5a, -5b, -10b, and -11, all showed relatively low expression in 

resting zone.  

 
 Fig. 10. Temporal Markers for Growth Plate Senescence. Relative mRNA expression of Wnt family members in growth plate zones from 1-week-old mice (n = 6). 
Among the Wnt family members that signal through β–catenin, Wnt-4 had the highest 

mRNA expression in the growth plate. The observed expression pattern is compatible 

with previous studies showing that Wnt-4 overexpression accelerates hypertrophy of 

chondrocytes (Hartmann and Tabin 2000).  However, mice null for Wnt-4 have been 

reported to have either no growth plate phenotype (Stark, Vainio et al. 1994) or a slight 

delay in chondrocyte maturation (Spater, Hill et al. 2006). Our data suggest that this 

mild phenotype, which contrasts with the more severe delayed hypertrophic 

differentiation and decreased chondrocyte proliferation of mice lacking β–catenin, may 

be attributable to redundancy between Wnt-4 and Wnt-10b, which also acts through the 

β–catenin pathway and shows a similar spatial expression pattern. Consistent with this 

hypothesized redundancy in growth plate, mice lacking Wnt-10b display decreased 
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trabecular bone but have not been reported to have abnormal endochondral bone 

formation at the growth plate (Bennett, Longo et al. 2005).  Wnt-2b, although 

expressed at low levels, may also contribute to redundancy. In our study, Wnt-2b, 

which is required for limb initiation in zebrafish and chick (Kawakami, Capdevila et al. 

2001; Ng, Kawakami et al. 2002), was a partial exception to the overall expression 

pattern, since it did not seem to decrease in the hypertrophic zone and was absent in 

resting and proliferative chondrocytes (Fig. 10). There is no study involving ablation or 

overexpression of Wnt-2b in growth plate to add insights about its role in growth plate 

regulation. We speculate if Wnt-2b may be important in the process of chondrocyte 

hypertrophy and terminal differentiation, but additional functional studies are required.  

Conversely, the noncanonical calcium pathway can antagonize the canonical Wnt/β–

catenin pathway by promoting the degradation of β–catenin (Topol, Jiang et al. 2003; 

Katoh 2005), and appears to have an important role in growth plate formation and 

function. Wnt-5a null mice display a severe skeletal phenotype with limb truncation. In 

growth plates, chondrocyte hypertrophy is delayed, suggesting that Wnt-5a promotes 

chondrocyte hypertrophy (Yamaguchi, Bradley et al. 1999; Yang, Topol et al. 2003)). 

Wnt-5b overexpression appears to have different effects, promoting proliferative zone 

formation and inhibiting cell cycle withdrawal and chondrocyte hypertrophy (Yang, 

Topol et al. 2003). The expression pattern detected in this study is consistent with the 

findings from mouse models, described above, suggesting that Wnts -5a and -5b may 

modulate production of proliferative zone chondrocytes and their conversion to 

hypertrophic chondrocytes. This expression pattern is also similar to, though perhaps 

not identical to, the expression pattern observed by in situ hybridization in the 

embryonic skeleton; Wnt-5a was observed in proliferative and prehypertrophic 

chondrocytes and Wnt-5b in the region between prehypertrophic and hypertrophic 

chondrocytes (Yang, Topol et al. 2003). Little is known about Wnt-11 function in the 

mammalian growth plate. Overexpression of Wnt-11 in the developing chick limb 

results in slightly truncated limbs and joint fusion but does not appear to delay 

chondrocyte differentiation (Church, Nohno et al. 2002). Our study, showing similar 

expression patterns for Wnts -5a, -5b, and -11, all of which signal through the calcium 

pathway, suggest that these three members of the Wnt family may have redundant, 

overlapping, or interacting roles in the growth plate.  Therefore, ablation of these genes 

in combinations may reveal a growth plate phenotype that is more severe and perhaps 

qualitatively different than occurs with ablation of any single one of these genes. 
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Interestingly, the similarity between the general pattern of Wnt expression and Ihh 

expression in the growth plates of 1-week-old mice suggests a possible interaction 

between both pathways. In embryonic mouse long bones, Wnt-9a ablation caused 

downregulation of Ihh expression and signalling (Spater, Hill et al. 2006). Whether 

Wnts, either those signalling through the canonical pathway or those signalling through 

the calcium pathway, interact with Ihh in the postnatal growth plate is unknown and 

speculative. 

Some of the Wnt genes that we found to be expressed in the postnatal growth plate 

have also been implicated in other models of postnatal chondrogenesis. Human dermal 

fibroblasts cultured in the presence of chondroinductive demineralized bone powder 

show increased expression of Wnts -2b, -5b, and -10b (Yates 2004), whereas Wnts -4, -

5a and -5b are up-regulated during bone repair in vivo (Hadjiargyrou, Lombardo et al. 

2002; Zhong, Gersch et al. 2006).  

To rule out the role of the identified Wnts in growth plate senescence, we hypothesized 

that change in Wnt gene expression might explain the functional changes in growth 

plate observed with age. We therefore studied Wnt expression in the mouse growth 

plate at 4 weeks, an age by which longitudinal bone growth has slowed markedly, 

approximately two-fold, in the mouse (van & Van den 1978).  Contrary to our 

hypothesis, we found that all Wnts that had been readily detected in the growth plates 

of 1-week-old mice were still expressed in growth plate cartilage of 4-week-old mice, 

at similar levels (Fig. 10). Because the growth plate height is diminished at this age in 

mice, we were only able to microdissect the growth plates in two regions, the 

resting/proliferative and prehypertrophic/ hypertrophic regions. As a result, our 

comparisons to 1-week-old mice were less precise. However, we can conclude that 

expression of the Wnts that we detected in growth plate at 1 week persists and remains 

at similar at levels at 6 weeks, but we cannot exclude modest changes in gene 

expression of Wnts with age, since the expression analysis from two distinct zones 

combined may hide or compensate subtle but significant changes expected with age 

(Fig. 11). In addition, change in expression of Wnt family may include other genes 

involved in its signaling, such as receptors (e.g. Frizzled), co-receptors (Lrp5, Lrp6) 

and Wnt-antagonists (e.g. Sfrp).  
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4.3 GROWTH-REGULATED NETWORK OF IMPRINTED GENES 

IN THE POST-NATAL GROWTH PLATE (PAPER III) 

In this study, we present data suggesting that a growth regulating imprinted gene 

network (Cdkn1c, Grb10, Gtl2, Mest, Dlk1, Peg3, Ndn, Slc38a4, H19, and 

Plagl1/Zac1) previously implicated in the control of embryonic (Varrault, Gueydan et 

al. 2006) and postnatal growth deceleration of multiple tissues ((Lui, Finkielstain et al. 

2008) might show a similar coordinate down-regulation in rat metaphyseal bone, but a 

more gene-specific pattern of expression in proliferative chondrocytes of rat growth 

plate cartilage.  

Similar to previous findings in kidney, lung and liver, expression of all studied genes, 

except Gtl2, declined significantly with age in metaphyseal bone (Fig. 12A).  In 

contrast, in growth plate, we found that expression of growth-promoting genes, Mest, 

Dlk1, and Gtl2 (all P < 0.001), decreased with age in PZ, whereas growth-inhibitory 

genes, Cdkn1c and Grb10 (P < 0.001; P < 0.05 respectively) increased with age (Fig. 

Fig. 11. Temporal Expression of 
Wnts in Growth Plate. Relative 
mRNA expression of Wnt family 
members in growth plates of 1-
week and 4-week-old mice (n = 6). 
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12B). Those findings are thus consistent with the hypothesis that this network of 

imprinted genes contributes to the developmental decline in the rate of longitudinal 

bone growth that occurs during postnatal development.  

 

Fig. 12. Temporal mRNA expression of imprinted gene network. A) In metaphyseal bone (MB); and B) 
In growth plate proliferative zone (PZ), from 1-, 3-, and 9-week-old rats (n = 5, all ages). Real-time qRT-
PCR normalized to 18S rRNA, and, for convenience, multiplied by 106.  * P < 0.05; ** P < 0.01; *** P < 
0.001. 

In order to explore the role of this network of imprinted genes in the regulation of 

growth plate chondrocyte differentiation, we also characterized its expression in 

individual zones of the growth plate (Fig. 13).  To our knowledge, this is the first report 

characterizing the expression patterns of these genes, except Igf2, in growth plate 

cartilage. We have previously shown that Igf2 mRNA expression decrease from RZ to 

PZ in growth plate cartilage of 1-week-old rats (Parker, Hegde et al. 2007). Expression 

of other six genes (Mest, Dlk1, Peg3, Grb10, Gtl2 and H19) in the network thus 

decreases as chondrocytes differentiate from RZ to HZ chondrocytes. Four of these 

genes (Mest, Dlk1, Peg3, and Gtl2) promote growth, and their expression pattern 

suggests that they promote proliferation in the RZ and/or PZ. Interestingly, all genes 
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that were found to decrease with age (Mest, Dlk1, Gtl2, H19 and Igf2) also decreased 

during chondrocyte differentiation. These findings may suggest that the network not 

only contribute to the decline in proliferation that occurs during growth plate 

senescence, but possibly also to the inhibition of proliferation that occurs during 

hypertrophic differentiation. In contrast, comparisons of global gene expression 

changes during growth plate senescence and growth plate chondrocyte differentiation 

do not show substantial overlap (data not shown). Therefore, on a transcriptsome level, 

growth plate senescence bare little similarity with hypertrophic differentiation, but in 

regard to the studied network of imprinted genes, the process of growth plate 

senescence show transcriptional similarities to chondrocyte differentiation. 

 

4.4 GROWTH PLATE SENESCENCE IS A FUNCTION OF 

GROWTH (PAPER IV) 

We have shown in the first paper of this thesis that several genes change their 

expression with postnatal age in the rat PZ, based on microarray data analysis, 

Fig. 13. Spatial mRNA expression 
of imprinted genes in resting (RZ), 
proliferative (PZ), and 
hypertrophic (HZ) zones of growth 
plate and metaphyseal bone (MB) 
from 1-week-old rats (n = 5). 
Quantitative real-time RT-PCR was 
performed on samples from 
individual animals, normalized to 
18S rRNA, and, for convenience, 
multiplied by 106. 
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suggesting that there is also a developmental program withing growth plate cartilage 

in addition to the specific changes observed at the functional and structural level.   

This developmental program has been termed “growth plate senescence” and takes 

place as longitudinal bone growth decline with age (Nilsson and Baron 2004). Delay 

in growth plate senescence after transient hypothyroidism in rats (Marino, Hegde et 

al. 2008) suggests that growth plate senescence is a function of growth rather than 

age. We reasoned that if this hypothesis is true, then growth plate senescence would 

be slowed down by any growth inhibiting condition, not only by hypothyroidism. To 

test this hypothesis, we used another model of transient growth inhibition, providing 

newborn rats a tryptophan deficient diet (Trp-) during the first four postnatal weeks.  

We found that during recover of the induced growth inhibition, molecular (Fig. 14A), 

functional (Fig. 14B) and structural markers (Fig. 14C) of growth plate senescence 

were delayed by prior Trp- deficiency indicating that the developmental program of 

senescence had occurred more slowly during the period of growth inhibition. Tibial 

growth rate, which is a functional marker of growth plate senescence, declined in 

control animals and was delayed in Trp- rats compared to controls (P<0.001, Fig. 

14B). The delay in structural changes was also evident by quantitative histology of 

growth plate sections, such as shorter growth plate height during tryptophan 

deficiency compared to control, but significantly taller growth plates after recovery of 

the growth inhibiting condition (Fig. 14C). Other studies in rabbits with induced-

hypercortisolism support this concept as well (Baron, Klein et al. 1994; Gafni, Weise 

et al. 2001). 
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Fig. 14. Structural and functional senescent changes in the growth plate were delayed by 
prior tryptophan deficiency. A) Structural markers at different ages, including resting, 
proliferative and hypertrophic zones height; number of resting zone chondrocytes per 200 µm 
of growth plate width; number of proliferative and hypertrophic chondrocytes per column; 
growth plate height; number of hypertrophic columns or column density per 500 µm of growth 
plate width; and terminal hypertrophic chondrocytes height. Each experimental group contains 
4-5 animals. B) Rate of proximal tibia growth per week. C) Photomicrographs of Masson-
Trichrome stained longitudinal sections of proximal tibial growth plate from control and Trp- 
animals at different ages. During the period of growth inhibition (4wk), the overall growth plate 
height in the Trp- animals was smaller than the control animals, despite having significantly 
more resting chondrocytes. At 8-weeks of age, the growth plate height was greater in animals 
that had previously received a Trp- diet (N= 4-5 animals). Bar represents 50 µm. a, Effect of age, 
one-way ANOVA; b, Effect of treatment during the recovery period, two-way ANOVA. 

However, the underlying cellular mechanisms by which growth drives senescence 

and advances the program remain to be elucidated. Postnatal decline in growth rate is 

observed not only in the long bone, but also in many other organs, suggesting a 

common and concordant mechanism to maintain body proportion. In transplantation 

experiments, growth of the transplanted organs generally depends on the age of the 

donor, supporting this hypothesis (Cooke, Yonemura et al. 1986; Pape, Hoppe et al. 

2006).  

Based on our microarray data (paper I), we investigated five genes that increase with 

age and other three genes that significantly decrease with age (Fig. 15). We found that 
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after catch-up growth, previously Trp- rats showed a delay in the age-dependent 

changes in gene expression of Igfbp7, Calca, Prss11 and Pycard compared to 

controls. Because expression of these genes normally rises during senescence, the 

findings indicate that prior Trp deficiency delayed the normal increase. Conversely, 

prior Trp deficiency delayed the normal decline of Igf2 observed in control animals. 

In addition, hypothyroidism but not tryptophan deficiency caused a significant delay 

in the developmental decline of Asb4 expression.  

 

Finally, our findings also provide important insights into the mechanism of catch-up 

growth, which may be partly explained by delayed growth plate senescence. In our 

study, animals previously receiving a Trp- diet have tibial growth rates higher than the 

control animals and appear to have a delayed decline in tibial growth of 

approximately 2 weeks (Fig. 14B). Notably, this delay was similar in magnitude to 

the delay in structural and molecular markers of the growth plates. Taken together 

with previous findings during glucocorticoid excess and hypothyroidism (Gafni, 

Weise et al. 2001; Marino, Hegde et al. 2008), our findings suggest that delayed 

Fig. 15. Prior tryptophan deficiency or prior 
hypothyroidism delayed senescent changes of 
gene expression in the growth plate.  mRNA 
levels were measured by real-time PCR at various 
ages in castrated male rats (left column) and in 
rats that had previously received a tryptophan-
deficient diet (dotted red line, middle column) or 
received PTU to induce hypothy-roidism (dotted 
blue line, right column) along with corresponding 
controls (solid lines).
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growth plate senescence is a general mechanism that contributes to catch-up growth 

after a variety of growth inhibiting conditions. In summary, our findings support the 

hypothesis that delayed senescence is a general consequence of growth inhibition, 

suggesting that growth plate senescence is not a function of time ‘per se’, but rather 

of growth. 

 

4.5 THE ROLE OF miRNAs IN GROWTH PLATE SENESCENCE 

(PAPER V) 

MicroRNAs (miRNAs) are a new class of small non-coding RNA that regulate gene 

expression and has been implicated in the control of several biological mechanisms, 

such as growth proliferation, apoptosis and aging. In order to further characterize 

growth plate senescence and explore the molecular mechanisms that control the 

developmental program of growth plate senescence, we used miRNA microarray and 

real-time PCR analyses to identify miRNA expression in growth plate cartilage and 

also to detect changes in miRNA expression during growth plate senescence.  Here, we 

report original findings of age-regulated miRNAs in mice growth plate during postnatal 

growth, and unique miRNAs preferentially expressed in growth plate compared to 

metaphyseal bone and other tissues. Additional to the microarray profiling, 

bioinformatic analysis of predicted target genes revealed biological pathways likely 

involved in the function of age-regulated miRNAs during postnatal bone growth.  

Furthermore, transfection of selected pre-miRNAs by inhibitory anti-miRNA in 

primary resting zone chondrocytes show that individual miRNAs may contribute to the 

developmentally regulated decline in longitudinal growth, such as miR-195 by 

increasing chondrocytes apoptosis and delaying hypertrophic differentiation. 

 

4.5.1 Developmentally-Regulated miRNAs in Growth Plate Cartilage 

Four miRNAs, miR-195, -497, -125a-3p and -142-3p, were found to be at least 10-fold 

(P<0.01) up-regulated and 14 down-regulated with age in growth plate cartilage (Fig. 

16). It has been shown that miR-195 and miR-497 are down-regulated in several 

cancers, with potential role as tumor-suppressor (Flavin, Smyth et al. 2009). Little is 

known about the function of the other two miRNAs. 
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To explore the biological function and mechanisms of action of age-regulated miRNAs 

in growth plate, first we determined predicted target genes by using TargetScan (Lewis, 

Shih et al. 2003) and then, analyzed their functional role using Ingenuity pathway 

analysis (Ingenuity System Inc, Redwood City, CA) (Guerra 2008). The analysis of 

target genes from both up- (Table 3) and down-regulated miRNAs (Table 4) revealed 

enrichment of genes involved in the control of cell cycle, cell growth and cell death. It 

is important to remark that our data analyze the dynamic process of growth plate 

senescence, in which cell death and cell growth regulation is clearly altered.  In 

addition, canonical pathways most strongly implicated included known pathways 

involved in chondrogenesis, such as TGF-β and Wnt/β-catenin signaling, corroborating 

our findings in the previous studies included in this thesis. In special, Wnt/β-catenin has 

been consistently implicated in postnatal growth plate senescence. In a previous study, 

we have detected that only six members of Wnt family are expressed in mice postnatal 

growth plate, and three of them act through the  Wnt/β-catenin pathway (Andrade, 

Nilsson et al. 2007). Among these Wnts, we found that Wnt-4 is targeted by up-

regulated miRNAs; whereas Wnt-2b is targeted by down-regulated miRNAs. Wnts -5a, 

-5b and -11, which act through the non-canonical/Calcium-pathway, are predicted 

Fig. 16. Expression of miRNAs A) up-
regulated and B) down-regulated in 
6-week-old growth plate compared to 
1-week-old mice growth plates (more 
than 10fold-change). Microarray 
signal values were background 
corrected and normalized. Relative 
expression values (white bars, right y-
axis, n=3) of miR-195 and miR-379 
generated by real-time PCR were 
normalized to sno202, validating 
microarray signal values. 
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targets for down-regulated miRNAs. In the postnatal growth plate, the Wnt/β-catenin 

signaling is necessary for hypertrophic differentiation (Chen, Zhu et al. 2008). 

Inhibition of β-catenin and TCF (ICAT) inhibit β-catenin signaling but not cell 

adhesion, resulting in viable Col2a1-ICAT transgenic mice, with normal size at birth, 

followed by progressive growth retardation during postnatal life. Growth plate of 

Col2a1-ICAT transgenic mice present reduced chondrocyte proliferation and increased 

chondrocyte apoptosis (Chen, Zhu et al. 2008), similar to the phenotype of cartilage-

specific Dicer-knockout mice (Kobayashi, Lu et al. 2008). Interestingly, Wnt/β-catenin 

pathway was also implicated in growth plate senescence in our previous study designed 

to detect changes in global mRNA expression during growth plate senescence (Lui et 

al). Altogether, these findings suggest that miRNAs play an important role in the 

regulation of Wnt signaling during postnatal growth. 

 

miRNAs Up-regulated with age   no. of miRNAs 

P<0.01  21 

P<0.01, Fold Change ≥ 10.0  4 

Target Gene (TargetScan database)   no. of genes 

Predicted targeted genes  803 

Top Molecular and Cellular Functions p-value no. of genes 

Cell Cycle 5,24E-13 - 6,35E-3 116 

Amino Acid Metabolism 1,20E-11 - 6,06E-3 69 

Post-Translational Modification 1,20E-11 - 6,06E-3 120 

Small Molecule Biochemistry 1,20E-11 - 6,35E-3 87 

Cell Death 2,04E-10 - 5,50E-3 210 

Canonical Pathway p-value Ratio 

Axonal Guidance Signaling 3,25E-06 38/403 (9.4%) 

PPARα/RXRα Activation 8,89E-06 22/182 (12.1%) 

Insulin Receptor Signaling 9,54E-06 19/140 (13.6%) 

TGF-β Signaling 1,14E-05 14/83 (16.9%) 

Wnt-β-catenin Signaling 2,63E-05 21/168  (12.5%) 

Ratio = number of genes with P < 0.05 / total number of genes in the pathway 

Table 3.   Target genes regulated by up-regulated miRNAs with age. Bioinformatic analysis of the 

genes targeted by up-regulated miRNAs (more than 10-fold change) in growth plate chondrocytes with 

age (6-week vs 1-week-old mice), by using the Ingenuity Pathway Analysis (IPA) software 8.0 

(Ingenuity Systems Inc, Redwood City, CA). All P values ≤ 0.01 were considered significant. 

 

 



 

 

61  

Target Genes regulated by age-down-regulated miRNAs  

miRNAs down-regulated miRNAs with age   no. of miRNAs 

P<0.01  36 

P<0.01, Fold Change ≥ 10.0  14 

Target Gene (TargetScan database)   no. of genes 

Predicted targeted genes  1428 

Top Molecular and Cellular Functions p-value no. of genes 

Gene Expression 4,78E-28 - 1,22E-3 116 

Cell Death 7,92E-14 - 1,22E-3 69 

Cellular Development 1,53E-13 - 1,22E-3 120 

Cellular Growth and Proliferation 4,78E-11 - 9,99E-4 87 

Cellular Movement 9,99E-09 - 1,22E-3 210 

Canonical Pathway p-value Ratio 

TGF-β Signaling 4,01E-09 24/83 (28.9%) 

Wnt-β-catenin Signaling 8,15E-08 35/168 (20.8%) 

Factors Promoting Cardiogenesis in Vertebrates 2,73E-07 22/89 (24.7%) 

Molecular Mechanisms of Cancer 5,81E-07 54/372 (14.5%) 

Axonal Guidance Signaling 4,69E-06 55/403 (13.6%) 

Ratio = number of genes with P < 0.05 / total number of genes in the pathway 

Table 4. Bioinformatic analysis of the genes targeted by down-regulated miRNAs (more than 10-fold 

change) in growth plate chondrocytes with age (6-week vs 1-week-old mice), by using the Ingenuity 

Pathway Analysis (IPA) software 8.0 (Ingenuity Systems Inc, Redwood City, CA). All P values ≤ 0.01 

were considered significant. 

Next, in order to explore the functional role of selected age-regulated miRNAs in 

growth plate chondrogenesis, in vitro gain- and loss-of function experiments in primary 

chondrocytes were performed.  The functional studies in this study were focused on up-

regulated and selected highly expressed miRNAs.  Among the miRNAs that were up-

regulated with age, in vitro gain of function experiments showed that miR-195 

(P<0.001) and miR-497 (P=0.034) increase apoptosis of chondrocytes (Fig. 17B). 

Although miR-195 has been shown to function by promoting cell cycle arrest in other 

tissues (Flavin, Smyth et al. 2009), our findings suggest that miR-195 controls 

chondrogenesis mainly by increasing apoptosis, rather than by decreasing proliferation. 

In addition, gain-of-function of miR-195 in primary cultured chondrocytes also 

decreased mRNA expression of type 10 collagen,   suggesting that miR-195 acts to 

delay hypertrophic differentiation.  Gain-of-function of miR-497 was found to increase 

apoptosis, presumably by down-regulating expression of anti-apoptotic proteins bcl-2 

and bcl-x (Yin, Deng et al.), but did also increase proliferation of primary growth plate 
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chondrocytes. However, by promoting chondrocyte proliferation together with miR-

142-3p (P=0.006) and miR-125a-3p (P=0.012), miR-497 may contribute to the decline 

in chondrocyte proliferation observed in growth plate of cartilage-specific dicer-

knockout mice (Fig. 17). Among the down-regulated miRNAs, the absence of 

phenotype observed in this study may be explained by compensatory mechanisms by 

other miRNAs. 

 

Fig. 17. Gain-of-Function of up-regulated miRNA with age:  A) Gain-of-function of miR-125a-3p 
(P=0.012), miR-142-3p (P=0.006), and miR-497 (P=0.039) increased proliferation of primary 
chondrocytes. Proliferation was assessed by using BrdU proliferation colorimetric kit (Roche). B) Gain-
of-function of miR-195 (P<0.001) and miR-497 (P=0.034) increase apoptosis of chondrocytes compared 
to negative control. Apoptosis was determined by Cell Death ELISA colorimetric kit (Roche). C) Decline in 
Col10a1 mRNA expression after gain-of-function of miR-195. Results are compared to negative control 
(non-specific miR) of treated cells (n=3 biological replicates from three independent experiments. 
Results for proliferation and apoptosis are expressed as percent of negative control, and expressed as 
mRNA relative expression to 18S by real-time PCR for Col10. 

 

4.5.2 MiRNAs preferentially expressed in growth plate cartilage or metaphyseal 

bone 

Our search for potential cartilage-specific miRNAs revealed that miR-455 (37-fold), 

miR-503 (69-fold) and miR-379 (29-fold) were preferentially expressed in 

chondrocytes, in addition to the well known cartilage-specific miR-140 (29-fold) and 

miR-140* (26-fold) compared to metaphyseal bone (Fig. 18A). The magnitude and 
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preferential expression of the cited miRNAs compared to metaphyseal bone and other 

tissues (lung, kidney and heart) suggest that those miRNAs may be necessary for 

specific chondrocyte phenotype and differentiation during postnatal life.  

 
Fig. 18. MiRNAs preferentially expressed in A) growth plate, and B) metaphyseal bone. MiRNA 
expression was more than 10-fold change between tissues throughout life (1- and 6-week-old mice). 
Microarray signal values were background corrected and normalized. Relative expression values (white 
bars, right y-axis, n=3) of miR-140 generated by real-time PCR were normalized to sno202, validating 
microarray signal values. 

Loss-of-function experiments of highly and preferentially expressed miRNAs in growth 

plate showed that miR-140* (P=0.011) and miR-503 (P=0.012) increase chondrocyte 

proliferation (FIG. 19A), thus suggesting that they may be negative regulators of 

longitudinal bone growth. Consistent with our findings, miR-503 has been shown to 

induce cell-cycle arrest (Forrest, Kanamori-Katayama et al.) and inhibit cell growth 

(Jiang, Feng et al. 2009) in other cell types. The importance of miR-140 and miR-140* 

in early chondrogenesis is established, but their functional role remains unknown 

(Nicolas, Pais et al. 2008; Song, Wang et al. 2009; Tardif, Hum et al. 2009). Inhibition 

of miR-455, miR-379, and miR-140 using specific anti-miR inhibitors did not cause 

significant changes in proliferation or apoptosis. Whether this is due to used in vitro 

model or due to a true lack of effect needs to be addressed by further functional studies. 
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Fig. 19. Loss-of-Function of highly and preferentially expressed miRNAs in growth plate: A) Increase of 
chondrocyte proliferation 24h after inhibition of miR-140* (P=0.011) and miR-503 (P=0.012) and other 
preferentially expressed miRNAs in growth plate chondrocytes. Proliferation was assessed by using 
BrdU proliferation colorimetric kit (Roche). B) Measurement of apoptosis after inhibition of miR-140*, 
miR-503, miR-455, miR-379 and miR-140. Apoptosis was determined by Cell Death ELISA colorimetric kit 
(Roche). C) Effect of miRNAs in Col10a1 mRNA expression, by inhibition of miR-140* and miR-503. 
Results are compared to negative control (non-specific miR) of treated cells (n=3 biological replicates 
from three independent experiments. Results for proliferation and apoptosis are expressed as percent 
of negative control, and expressed as mRNA relative expression to 18S by real-time PCR for Col10. 

Importantly, the identification of miRNAs as potential regulators of chondrocyte 

differentiation has clinical implications. The control of several genes and pathways 

important in chondrogenesis makes specific miRNAs attractive therapeutic targets in 

diseases that affect growth development. Our findings contribute to dissect the role of 

miRNAs and their predicted target-genes in endochondral ossification. Further 

functional studies that address the role of individual miRNAs in the regulation of 

growth plate chondrogenesis are needed. 
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5 CONCLUSIONS 

1. We have found novel biological functions, molecular pathways, transcription 

factors and markers implicated in the spatially-associated chondrocyte 

differentiation and temporally-associated senescence of growth plate cartilage, 

which enlighten the search for novel molecular regulatory mechanisms of 

postnatal chondrogenesis. 

2. We have characterized the spatial and temporal expression pattern of Wnt 

family and a network of imprinted genes implicated in embryonic growth 

within postnatal growth plate chondrocytes, suggesting that the identified 

genes may contribute to the chondrocytes differentiation and the fundamental 

biological mechanism that causes the linear growth rate to decline with age.  

3. We found similar delays in functional, structural and molecular markers of 

growth plate senescence markers during different growth inhibiting 

conditions. These findings indicate that growth plate senescence is not simply 

a function of time ‘per se’ but rather of growth, and that delayed senescence 

may be a general consequence of growth inhibition.  

4. We have developed a system for culture and transfection of resting zone 

chondrocytes, which enabled us to study the role of miRNAs in primary 

chondrocytes phenotype, simulating more closely in vivo conditions. 

5. Finally, we identified unique miRNAs that were preferentially expressed 

and/or age-regulated in growth plate chondrocytes and used bioinformatic 

approaches to detect signaling pathways that may be developmentally 

regulated by miRNAs. Functional studies indicate that age-regulated miR-

142-3p, miR-125a-3p, and miR-497 positively regulate proliferation and thus   

act to maintain proliferation during growth plate senescence. Conversely, 

miR-195 and miR-497 may be important in the control of apoptosis that is 

increased during growth plate senescence. Our findings contribute to dissect 

the role of miRNAs and their predicted target genes in the control of 

endochondral ossification.  
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