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Compston, Juliet E. Sex Steroids and Bone. Physiol Rev 81: 419–447, 2001.—Sex steroids are essential for skeletal
development and the maintenance of bone health throughout adult life, and estrogen deficiency at menopause is a
major pathogenetic factor in the development of osteoporosis in postmenopausal women. The mechanisms by which
the skeletal effects of sex steroids are mediated remain incompletely understood, but in recent years there have been
considerable advances in our knowledge of how estrogens and, to a lesser extent androgens, influence bone
modeling and remodeling in health and disease. New insights into estrogen receptor structure and function, recent
discoveries about the development and activity of osteoclasts, and lessons learned from human and animal genetic
mutations have all contributed to increased understanding of the skeletal effects of estrogen, both in males and
females. Studies of untreated and treated osteoporosis in postmenopausal women have also contributed to this
knowledge and have provided unequivocal evidence for the potential of high-dose estrogen therapy to have anabolic
skeletal effects. The development of selective estrogen receptor modulators has provided a new approach to the
prevention of osteoporosis and other major diseases of menopause and has implications for the therapeutic use of
other steroid hormones, including androgens. Further elucidation of the mechanisms by which sex steroids affect
bone thus has the potential to improve the clinical management not only of osteoporosis, both in men and women,
but also of a number of other diseases related to sex hormone status.
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I. INTRODUCTION

Osteoporosis is defined as a condition characterized
by reduced bone mass and disruption of bone architec-
ture, resulting in increased bone fragility and increased
fracture risk (294). These fractures, which particularly
affect the hip, spine, and wrist, are a major cause of
morbidity and mortality in elderly populations (65, 247,
248). Clinically, osteoporosis may be recognized by the
presence of fragility fractures, but recently, diagnostic
criteria based on bone mineral density measurements
have been proposed (397), based on the well-documented
inverse relationship between bone mineral density and
fracture risk (70, 115, 160, 235, 390). According to this
classification, osteoporosis is defined as a bone mineral
density in the spine and/or proximal femur 2.5 or more
standard deviations below normal peak bone mass. The
term established osteoporosis is used when one or more
fragility fractures have occurred.

The recognition, by Fuller Albright in 1948, of the
central role of estrogen deficiency in the pathogenesis of
postmenopausal osteoporosis (7) provided a major stim-
ulus to research into this hitherto neglected condition and
into the mechanisms by which estrogens affect bone. The
advances that followed have been paralleled by a rapid
growth in understanding of bone physiology and bio-
chemistry; together, these have been responsible for sig-
nificant improvements in the clinical management of pa-
tients with osteoporosis over the past two decades. In
particular, Albright’s fundamental observation provided
the rationale for the use of estrogen replacement therapy
in the prevention of postmenopausal osteoporosis and
altered the widely held perception that osteoporosis was
an inevitable and untreatable consequence of ageing.

Sex steroids play an essential role in the maintenance
of bone health throughout life, and adverse effects of
hormone deficiency can be seen in the young and old and
in men and women. The mechanisms by which these
effects are mediated remain incompletely understood and
are the subject of enormous research effort. The potential
therapeutic implications of progress in this field are, how-
ever, considerable and extend beyond osteoporosis. In
this review relevant aspects of bone physiology and bio-
chemistry are discussed, and current knowledge of the
skeletal effects of sex steroids is reviewed.

II. BONE COMPOSITION, STRUCTURE,

AND FUNCTION

The skeleton provides structural support for the
body, protecting internal organs and housing the bone
marrow. It also functions as a reservoir of calcium and
phosphate ions and plays a major role in the homeostasis
of these minerals. Bone consists of an extracellular ma-

trix, the organic phase of which is composed of type I
collagen, proteoglycans, and noncollagenous proteins
including osteocalcin, bone sialoprotein, osteonectin,
thrombospondin, and osteopontin. Bone matrix also con-
tains growth factors and cytokines that have an important
regulatory role in bone remodeling. The inorganic phase
of bone matrix is composed mainly of calcium hydroxy-
apatite.

Approximately 80% of the skeleton is composed of
cortical bone, which is found mainly in the shafts of long
bones and surfaces of flat bones. It is composed of com-
pact bone, which is laid down concentrically around cen-
tral canals or Haversian systems, which contain blood
vessels, lymphatic tissue, nerves, and connective tissue.
Cancellous or trabecular bone is found mainly at the ends
of long bones and in the inner parts of flat bones and
consists of interconnecting plates and bars within which
lies hematopoietic or fatty marrow. The surface-to-vol-
ume ratio of cancellous bone is much greater than that of
cortical bone, and the potential for metabolic activity is
correspondingly higher.

A. Bone Cells

Three cell types are found in bone, namely, osteo-
blasts, osteoclasts, and osteocytes. However, the close
proximity of the bone marrow exposes bone to the influ-
ence of other cell types that play a vital role both in the
production of osteogenic cells and in the regulation of
bone modeling and remodeling.

1. Osteoblasts

Osteoblasts are responsible for the formation and
mineralization of bone. They are derived from pluripotent
mesenchymal stem cells, which can also differentiate into
chondrocytes, adipocytes, myoblasts, and fibroblasts
(279, 280) (Fig. 1). The mechanisms by which commit-
ment to the osteoblast phenotype is achieved are not fully
established, but the core binding transcription factor
Cbfa1 (also known as osteoblast stimulating factor 2 or
Osf2) has recently been shown to be essential for osteo-
blast differentiation; thus loss of function mutant mice
exhibit complete lack of ossification of cartilage (197,
273), and heterozygous loss of function causes cleidocra-
nial dysplasia (255), a condition associated with patent
fontanelles, abnormal dentition, short stature, and hypo-
plastic clavicles. In addition, a number of other factors
are required for normal osteoblast differentiation includ-
ing fibroblastic growth factors (FGFs), transforming
growth factor-b (TGF-b), bone morphogenetic factors
(BMPs), glucocorticoids, and 1,25-dihydroxyvitamin D
[1,25(OH)2D] (216).

In situ, osteoblasts actively involved in bone forma-
tion appear as monolayers of plump cuboidal cells in
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close juxtaposition to newly formed unmineralized bone
(osteoid). Structural characteristics include a round nu-
cleus at the base of the cell, a strongly basophilic cyto-
plasm, and a prominent Golgi complex (44). Cytoplasmic
processes extend from the secretory side of the cell into
the bone matrix and communicate with the osteocyte
canalicular network. There are also gap junctions, com-
posed of proteins called connexins, that connect the cy-
toplasm of adjacent cells (343, 410). Developing and ma-
ture osteoblasts express a number of products including
type I collagen, alkaline phosphatase, osteopontin, and
osteocalcin that may be used to identify the osteoblastic
phenotype in vivo and in vitro.

Actively forming osteoblasts may subsequently un-
dergo apoptosis or become bone-lining cells or osteo-
cytes; both the latter are believed to represent further
stages of maturation. Bone-lining cells are flat elongated
cells with a spindle-shaped nucleus that lie along the
endosteal membrane covering quiescent bone surfaces.
Lining cells, together with the endosteal membrane, form
a protective layer over the bone surface; their function is
not well understood, but they may play a role in the
activation of bone remodeling (32).

2. Osteocytes

Osteocytes are small flattened cells within the bone
matrix and are connected to one another and to osteo-
blastic cells on the bone surface by an extensive canalic-
ular network that contains the bone extracellular fluid (1).
The cytoplasmic projections within the canaliculi commu-
nicate via gap functions and enable osteocytes to respond
to mechanical and biochemical stimuli (83, 308). Osteo-
cytes are terminally differentiated and may ultimately
undergo apoptosis or be phagocytosed during the process
of osteoclastic resorption.

Osteocytes are believed to play a central role in the
response to mechanical stimuli, sensing mechanical
strains and initiating an appropriate modeling or remod-
eling response via a number of chemical messengers in-
cluding glucose-6-phosphate dehydrogenase, nitric oxide,
and insulin-like growth factors.

3. Osteoclasts

Osteoclasts are large, multinucleated bone-resorbing
cells derived from hematopoietic precursors of the mono-
cyte/macrophage lineage. They are formed by the fusion
of mononuclear cells and are characterized by the pres-
ence of a ruffled border, which consists of a complex
infolding of plasma membrane, and a prominent cytoskel-
eton. They are rich in lysosomal enzymes, including tar-
trate-resistant acid phosphatase (TRAP). During the pro-
cess of bone resorption, hydrogen ions generated by
carbonic anhydrase II are delivered across the plasma
membrane by a proton pump to dissolve bone mineral.
Subsequently, lysosomal enzymes including collagenase
and cathepsins are released and degrade bone matrix.
Attachment of osteoclasts to the bone surface is an es-
sential prerequisite for resorption and is mediated by
integrins, particularly avb3, which bind matrix proteins
containing the motif Arg-Gly-Asp (153); potential ligands
include osteopontin, bone sialoprotein, thrombospondin,
osteonectin, and type 1 collagen. Morphologically, attach-
ment of the osteoclast to the bone surface is seen as an
actin-containing ring (211) that surrounds completely the
ruffled membrane.

It has long been known that osteoblastic or stromal
cells are essential for osteoclastogenesis, and the identity
of the factor concerned, termed “osteoclast differentia-
tion factor” or ODF, has recently been reported as recep-
tor activator of NFkB ligand (RANKL), a new member of
the tumor necrosis factor (TNF) ligand family, also
termed TRANCE (TNF-related activation-induced cyto-
kine) or osteoprotegerin ligand (OPGL) (413). The signal-
ing receptor for RANKL is RANK, a type 1 transmembrane
protein expressed by osteoclasts (9), whereas osteopro-
tegerin (OPG), a novel member of the TNF receptor su-
perfamily, acts as a soluble decoy receptor that prevents
RANKL from binding to and activating RANK on the os-
teoclast surface (198). The interaction of RANKL with
RANK activates a cascade of intracellular events that
involve activation of NFkB and the protein kinase JNK,
and interaction with TNF receptor-associated factors
(TRAFs) (147). Macrophage-colony stimulating factor

FIG. 1. Possible differentiation pathways of
the pluripotent mesenchymal stem cell.

January 2001 SEX STEROIDS AND BONE 421



(M-CSF) production by osteoblastic/stromal cells is also
essential for osteoclastogenesis (415), although unlike
RANKL, it does not appear to have effects on osteoclast
activity (364).

Osteoclast apoptosis is an important determinant of
osteoclast activity. Like osteocytes, osteoclasts are termi-
nally differentiated cells with a limited life span. The
cytokines interleukin-1, TNF-a, and M-CSF all reduce os-
teoclast apoptosis (348), thus prolonging the viability of
these cells. In contrast, as discussed in section IVC, estro-
gen increases apoptosis of osteoclasts (158), an effect
which is associated with increased production of TGF-b
and reduced expression of NFkB-activated genes. Loss of
function gene mutations associated with osteopetrosis, a
group of disorders caused by osteoclast dysfunction, are
shown in Table 1.

B. Bone Modeling and Remodeling

Bone modeling involves both the growth and shaping
of bones. It occurs during the first two decades of life in
humans and in animals species while growth plates re-
main open. In the mature adult skeleton, modeling may
occur in response to altered biomechanical stress such as
that induced by vigorous exercise, although the capacity
of the skeleton to respond in this way decreases with
increasing age. Modeling also occurs as part of the frac-
ture healing process. The process of bone modeling in-
volves both bone formation and resorption; the former
exceeds the latter and is not coupled to it temporally or
spatially as in bone remodeling.

Like bone modeling, bone remodeling is a surface
phenomenon. Remodeling serves to maintain the mechan-
ical integrity of the adult skeleton and also provides a
mechanism by which calcium and phosphate ions may be
released from or conserved within the skeleton. It con-
sists of the removal, by osteoclasts, of a quantum of bone

followed by the formation by osteoblasts within the cavity
so created of osteoid, which is subsequently mineralized.
In normal adult bone, the processes of resorption and
formation are coupled both in space and time; thus bone
resorption always precedes formation (coupling), and in
the young adult skeleton, the amounts of bone formed
and resorbed are quantitatively similar (balance) (Fig. 2).
The sites at which bone remodeling occurs are termed
basic multicellular units (BMUs) or bone remodeling
units. The life span of each remodeling unit in humans is
believed to be between 2 and 8 mo, with most of this
period being occupied by bone formation (287). In normal

FIG. 2. Schematic representation of bone remodeling. (From Comp-
ston JE. Bone morphology: quality, quantity and strength. In: Advances

in Reproductive Endocrinology. Oestrogen Deficiency: Causes and

Consequences, edited by Shaw RW. Carnforth, Lancs, UK: Parthenon,
1996, vol. 8, p. 63–84.)

TABLE 1. Loss of function gene mutations

resulting in osteopetrosis

Gene Mutations

PU.1
M-CSF
c-fos

c-src

Cathepsin K
TRAP
Carbonic anhydrase
NFkB
RANKL
TRAF 6
avb3
H1-ATPase

M-CSF, macrophage-colony stimulating factor.
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human adults, ;20% of the cancellous bone surface is
undergoing remodeling at any given time.

The first stage in bone remodeling involves activation
of the quiescent bone surface before resorption. Although
the process of activation is not well understood, it is
believed to involve retraction of lining cells and digestion
of the endosteal membrane, the latter possibly occurring
as a result of the production of collagenases by the lining
cells (32). Osteoclast precursors are then attracted to the
exposed mineralized bone surface and fuse to become
functional osteoclasts that resorb bone. Exposure of the
mineralized bone surface by this process of activation is
thought to be an essential prerequisite for osteoclastic
resorption. The presence of capillary sinusoids close to
sites of bone remodeling suggests that circulating osteo-
clasts may pass through the vessel wall before bone re-
sorption rather than being directly recruited from bone
marrow (288). There is a close interdependence between
angiogenesis and osteogenesis in developing bone (125,
151), a relationship which may also exist in adult bone.

The determinants of the sites at which bone remod-
eling is initiated have not been fully elucidated. However,
it is likely that the location of activation and the subse-
quent remodeling process is critically dependent on me-
chanical factors, and sites of trabecular thinning may thus
be favored. (60)

C. Cellular and Structural Mechanisms

of Bone Loss in Osteoporosis

At the tissue and cell levels, there are two possible
mechanisms of bone loss in osteoporosis (59) (Fig. 3).
Quantitatively, the most important is an increase in the

activation frequency (also termed high bone turnover) in
which the number of remodeling units activated on the
bone surface is increased; this results in a greater number
of units undergoing bone resorption at any given time and
is potentially reversible provided that bone remodeling is
coupled and that remodeling balance is maintained. The
second mechanism, which often coexists with increased
bone turnover, is that of remodeling imbalance, in which
the amount of bone formed within individual remodeling
units is less than that resorbed due either to an increase
in resorption, decrease in formation, or a combination of
the two. This form of bone loss is irreversible once the
remodeling cycle has been completed, at least in terms of
that remodeling unit.

These mechanisms of bone loss can be quantitatively
assessed using histomorphometric techniques. The ad-
ministration of two, time-spaced doses of a tetracycline
compound before bone biopsy enables identification of
actively forming bone surfaces (111) and calculation of
bone turnover and activation frequency. The amounts
of bone formed and resorbed within individual bone remod-
eling units can also be measured; the former is known as
the wall width (72) and is a measure of osteoblast func-
tion. The erosion depth and other indices of resorption
cavity size can be assessed after computerized or manual
reconstruction of the eroded bone surface (55, 118).

The alterations in bone remodeling responsible for
bone loss determine the accompanying changes in bone
architecture, an important determinant of the mechanical
strength of bone (62). In cancellous bone, either trabec-
ular thinning or trabecular perforation and erosion may
occur; these two processes are to some extent interde-
pendent. Trabecular thinning is associated with better

FIG. 3. Mechanisms of bone loss in
osteoporosis. (From Compston JE. The
skeletal effects of oestrogen depletion and
replacement: histomorphometrical studies.
In: Annual Review of the Management of

Menopause, edited by Studd J. Carnforth,
Lancs, UK: Parthenon, 2000, p. 287–296.)
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preservation of bone architecture than penetration and
erosion of trabeculae, the latter having the greater ad-
verse effects on bone strength. Increased activation fre-
quency and/or increased resorption depth predispose to
trabecular penetration and erosion, whereas low bone
turnover states favor trabecular thinning.

A number of approaches to the quantitative assess-
ment of cancellous bone structure have been described.
In histological sections of bone, trabecular width and
spacing can be measured directly or calculated from area
and perimeter measurements (289) and indirect assess-
ment of connectivity made by the technique of strut anal-
ysis (119) or measurement of trabecular bone pattern
factor (138) or marrow star volume (381). Finally, a num-
ber of techniques have been used to generate three-di-
mensional images of bone; these include reconstruction
of serial sections; scanning and stereo microscopy; volu-
metric, high-resolution, and microcomputed tomography;
and magnetic resonance imaging (124, 231). Such ap-
proaches enable direct assessment of connectivity and
measurement of anisotropy, but their application in vivo
is currently restricted by limited resolution, partial vol-
ume effects, and noise.

D. Regulation of Bone Remodeling

The regulation of bone remodeling involves a com-
plex interplay between systemic hormones, mechanical
stimuli, and locally produced cytokines, growth factors,
and other mediators (Fig. 4). Much of our knowledge in
this area is derived from in vitro experiments and may not
always be relevant to the control of bone remodeling
in vivo.

1. Mechanical factors

Mechanical stresses are a major determinant of bone
modeling and remodeling, and it is generally believed that
osteocytes are the major mechanosensory bone cell. In-
termittent loading at physiological levels of strain results
in rapid metabolic changes in osteocytes, one of the ear-
liest manifestations of which is an increase in the produc-
tion of glucose-6-phosphate dehydrogenase activity (293).
The mechanisms by which osteocytes sense mechanical
loading have not been fully established, but it is believed
that the deformation resulting from strain stimulates the
flow of interstitial fluid through the osteocyte canalicular
network (299). Electrokinetic streaming potentials and/or
fluid shear stress may then modulate production by the
osteocyte of mediators such as prostaglandins and nitric
oxide (264). These may then stimulate the production of
other cytokines and growth factors, for example, insulin-
like growth factor (IGF) (214).

2. Systemic hormones

Many systemic hormones influence bone modeling
and remodeling. In addition to the sex steroids, these
include parathyroid hormone (PTH), thyroid hormones,
growth hormone, glucocorticoids, and 1,25(OH)2D. Many
of these act via the production of locally produced factors
and may also interact with mechanical stimuli to affect
bone modeling and remodeling.

3. Locally produced factors

Bone is a rich source of cytokines and growth factors
(Fig. 5, Table 2) and also other mediators such as pros-
taglandins and nitric oxide. In addition, cells in the bone
microenvironment play a major role in the regulation of
bone remodeling, both as a source of bone cell precursors
and by the production of bone active cytokines and
growth factors. Table 2 lists the major cytokines and
growth factors known to be implicated in bone metabo-
lism. Those known to play an important role in mediating

FIG. 4. Control of bone remodeling. (From Compston JE. Hormone
replacement therapy for osteoporosis: clinical and pathophysiological
aspects. Reprod Med Rev 3: 209–244, 1994.)
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the effects of estrogen on bone are described in greater
detail below.

Interleukin (IL)-1a and -1b are potent stimulators of
bone resorption in vitro and in vivo (34, 129, 324). These
effects are mediated both by an increase in the prolifera-
tion and differentiation of osteoclast precursors and also
by increased osteoclastic activity (297, 354), the latter
resulting at least in part from inhibitory effects on osteo-
clast apoptosis. Some of the effects of IL-1 on osteo-
clasts result from an increase in prostaglandin synthesis
(34). IL-1 also has effects on osteoblasts, which are prob-
ably dependent on whether administration is continuous
or intermittent (130, 335). In the former situation, inhibi-
tory effects on bone formation are seen, whereas inter-
mittent administration is associated with an increase in
osteoblast proliferation and differentiation. The IL-1 re-
ceptor antagonist (IL-1ra) is a constitutively occurring
inhibitor of IL-1 (139), inhibiting IL-1-induced stimulation
of bone resorption both in vitro (330) and in vivo (136).
TNF-a and lymphotoxin (TNF-b) are also potent stimula-
tors of bone resorption (22, 173) and appear to act in a
similar way to IL-1.

IL-6 also stimulates bone resorption, although by dif-
ferent mechanisms. Its production in bone is increased by
other bone-resorbing cytokines and systemic hormones
(for example, PTH) (101), and it also acts synergistically
with these agents, increasing their bone resorptive effects
(75). The effects of IL-6 in vivo may be modulated by the
circulating levels of IL-6 soluble receptor (350).

Granulocyte/macrophage-colony stimulating factor
(GM-CSF) acts on the early development of hematopoi-

etic precursor cells, including osteoclasts (210). Unlike
M-CSF, it is not essential for osteoclastogenesis, although
it supports the differentiation of osteoclast precursors.
GM-CSF has also been reported to increase the prolifer-
ation of osteoblastic cells in vitro (74) and in vivo (352),
probably by an indirect action.

The TGF-b superfamily includes the TGF-b isoforms,
the activins and inhibins, and BMPs (28). TGF-b is present
in a latent, biologically inert form in bone matrix, its
active form being released in the process of bone resorp-
tion (298). It is a potent stimulator of bone formation
(267), stimulating osteoblastic differentiation and the syn-
thesis of bone matrix proteins and their receptors, while
inhibiting the synthesis of proteases. Most data support
inhibitory effects on osteoclastic bone resorption (29,
233) due to effects both on osteoclast formation and
activity, the latter effect being mediated by stimulation of
osteoclast apoptosis (157). Three main TGF-b receptors
exist (50): type I and type II, which are transmembrane
serine/threonine kinases and function as signaling recep-
tors (109), and type III, betaglycan, which is nonsignaling
(389). It is believed that TGF-b binds directly to the type
II receptor, which is constitutively active, and that this
complex is then recognized by the type I receptor to form
a complex, with phosphorylation of the type I receptor by
the type II receptor (401).

The BMPs are members of the TGF-b superfamily.
They possess osteoinductive properties, inducing differ-
entiation of osteoblastic and chondroblastic precursor
cells, and are similar to but not identical to TGF-b in
terms of their structure and activity (400). BMPs act as
morphogens during embryogenesis, with the pattern of
production of BMPs 2, 4, and 6 indicating a role in bone
and cartilage formation. The regulation and precise func-
tions of the BMPs remain to be elucidated, but estrogen-

TABLE 2. Cytokines and growth factors affecting bone

Cytokine/Growth Factor Abbreviation

Stimulators of bone resorption
Interleukins-1, -6, -8, -11 IL-1, -6, -8, -11
Tumor necrosis factors TNFs
Epidermal growth factor EGF
Platelet-derived growth factor PDGF
Fibroblast growth factors FGFs
Leukemia inhibitory factor LIF
Macrophage-colony stimulating factor M-CSF
Granulocyte/macrophage-colony stimulating

factor
GM-CSF

Inhibitors of bone resorption
Interferon-g IFN-g
Interleukin-4 IL-4

Stimulators of bone formation
Insulin-like growth factors IGFs
Transforming growth factor-b TGF-b
Fibroblast growth factors FGFs
Platelet-derived growth factor PDGFs
Bone morphogenetic proteins BMPs

FIG. 5. Effects of cytokines on osteoclast production and activity.
TGF-b, transforming growth factor-b; IL, interleukin; TNF-a, tumor ne-
crosis factor-a; M-CSF, macrophage-colony stimulating factor; GM-CSF,
granulocyte/macrophage-colony stimulating factor.
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induced stimulation of the production of BMP-6 mRNA
and protein has been demonstrated in human osteoblastic
cell lines (311).

IGFs exist in two forms: IGF-I and -II. In the circula-
tion, they form a large-molecular-weight complex with
binding proteins (IGFBPs), and in the case of IGFBP3 and
-5 complexes an acid-labile subunit (309). IGFs stimulate
bone formation, their production by bone cells being
regulated by a number of systemic hormones and locally
produced factors (45). They increase proliferation of os-
teoblast precursors and enhance the synthesis and inhibit
the degradation of type I collagen (145, 241). There are at
least six IGFBPs (45, 212), all of which are expressed by
bone cells in various in vitro systems (319). All IGFBPs
bind IGFs with high affinity, preventing their interaction
with the receptor. However, because of posttranslational
modifications that result in changes in both structure and
function, the IGFBPs may exert either stimulatory or
inhibitory effects; thus, for example, IGFBP-1 and -3 have
both stimulatory and inhibitory potential, IGFBP-2 and -4
are inhibitory, and IGFBP-5 is stimulatory (251). IGFBP-6
is inhibitory and exhibits a selective affinity for IGF-II
over IGF-I. The complexity of the IGF axis is further
increased by the action of IGFBP proteases, which affect
the binding affinity of the binding proteins for IGFs and
may themselves be regulated by IGFs (64, 85).

III. LIFETIME CHANGES IN BONE MASS:

EFFECTS OF SEX STEROIDS

A. Pattern of Lifetime Changes in Bone Mass

Bone mass increases throughout childhood and ado-
lescence (30, 31, 126); in prepubertal children, there is a
close relationship between bone mass and body height,
but this becomes less evident during puberty. In girls the

rate of increase in bone mass decreases rapidly after the
menarche, whereas gains in bone mass in boys persist up
to 17 yr of age (30, 353) and are closely linked to pubertal
stage and androgen status (200). Although by the age of 17
or 18 in both sexes the vast majority of peak bone mass
has already been achieved, small increases in bone mass
during the third decade of life have been demonstrated in
several studies (31, 116, 290, 310); however, this finding
has not been consistently reported (159, 236, 266). Peak
bone mass is attained in the third decade of life and
maintained until the fifth decade, when age-related bone
loss commences both in men and women, thereafter per-
sisting throughout life (140, 174, 239, 240, 313, 314, 318)
(Fig. 6).

The onset of age-related bone loss has not been well
defined. In cross-sectional studies, bone loss has been
documented in healthy premenopausal women at the
spine, proximal femur, and forearm (14), and this finding
has also been confirmed in prospective studies (13, 54,
337, 340). In women there is an acceleration in the rate of
bone loss at the time of the menopause, the duration of
which has not been well characterized but is probably
between 5 and 10 yr (16, 88, 123, 161, 265). In men,
relatively few data are available, but bone loss is generally
believed to begin during the fifth decade of life; thereafter,
both in women and men, bone loss continues throughout
life (140, 174, 239, 240, 313, 314, 318).

Genetic factors are important determinants of peak
bone mass, and up to 60–80% of its variance is genetically
determined (51, 78, 182). The basis of this effect has not
been fully defined, and a number of genetic polymor-
phisms are likely to be involved. A polymorphism in the
regulatory region of the collagen 1AI gene at a recognition
site for the transcription factor Sp1 has been demon-
strated to correlate with bone mineral density and frac-
ture in several populations (131, 366); there are many
other potential candidates including the vitamin D recep-

FIG. 6. Lifetime changes in bone mass. (From
Compston JE. Osteoporosis, corticosteroids and in-
flammatory bowel disease. Aliment Pharmacol Ther 9:
237–250, 1995.)
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tor gene, estrogen receptor gene, and genes for many
cytokines and growth factors (306). Other determinants
of peak bone mass include nutrition, calcium intake,
physical activity, and hormonal status.

B. Effects of Sex Steroids on Growth

and Peak Bone Mass

Sex steroids play an important role in bone growth
and the attainment of peak bone mass. They are respon-
sible for the sexual dimorphism of the skeleton, which
emerges during adolescence (369); the male skeleton is
characterized by larger bone size (even when corrected
for body height and weight) with both a larger diameter
and greater cortical thickness in the long bones. Volumet-
ric bone mineral density is, however, very similar in young
adult men and women (183), but the larger bone size in
men confers significant biomechanical advantages and, in
part, explains the lower incidence of fragility fractures
compared with women. Estrogen is essential for normal
closure of the growth plates in both sexes; thus estrogen
resistance and aromatase deficiency in men are associ-
ated with delayed bone age and tall stature despite nor-
mal or high circulating concentrations of testosterone
(252, 336).

Hypogonadism has adverse effects on the attainment
of peak bone mass both in men and women. Late men-
arche has been associated with reduced bone mineral
density (321, 340) and premenopausal amenorrhea result-
ing from anorexia nervosa (24, 315), excessive exercise
(84, 234), and hyperprolactinemia (23), and a variety of
other disorders (73) also result in low bone density. Re-
duced spinal bone mineral density has been reported in
women with asymptomatic disturbances of ovulation (i.e.,
without amenorrhea) (305), although this finding has not
been universal (79, 388), and premature menopause,
whether natural or induced, is a major risk factor for
osteoporosis (12). Low bone mineral density values have
also been reported in Turner’s syndrome, predominantly
reflecting the smaller bone size associated with this con-
dition (260, 263, 322), which is believed to be due to
resistance to growth hormone (374).

The role of androgens in growth of the male skeleton
during puberty is supported by several observations. An-
drogen deficiency due to hypogonadotropic hypogonad-
ism is associated with low bone mineral density (103),
while administration of testosterone before epiphyseal
closure leads to increases in bone mass (102) and testos-
terone administration to prepubertal boys results in in-
creased bone calcium accretion (238). The timing of pu-
berty may also be important, with some studies indicating
that late puberty is associated with reduced bone mineral
density and peak bone mass later in life (21, 104); in these
subjects, increases in bone mineral density were reported

in response to testosterone therapy. Notwithstanding
these observations, however, the effects of estrogen re-
sistance and aromatase deficiency on skeletal mass (253,
336) indicate that estrogens also play an important role in
skeletal development in males during adolescence; fur-
thermore, it is uncertain to what extent the skeletal ef-
fects of androgens are mediated by local metabolism to
estrogens. Finally, there is evidence that androgens also
have effects on the attainment of peak bone mass in
women (42, 43, 71), conditions of androgen excess in
women being associated with higher bone mineral density
(42, 81).

C. Age-Related Bone Loss and Relationship

to Sex Steroids

Estrogen deficiency is a major pathogenetic factor in
the bone loss associated with the menopause and the
subsequent development, in some women, of postmeno-
pausal osteoporosis. Estrogen replacement at or after
menopause, whether natural or induced, prevents meno-
pausal bone loss and characteristically results in an in-
crease in bone mineral density during the first 12–18 mo
of treatment (52, 96, 218, 259, 346). This increase, which is
typically between 3 and 5% but may be as much as 10%
(53, 219), is attributed to the simultaneous reduction in
activation frequency and formation of new bone within
existing resorption cavities when an antiresorptive agent
is administered in high turnover states. There is evidence,
almost exclusively from observational studies, that estro-
gen replacement is associated with a reduction in fracture
risk at the hip, spine, and wrist (162, 187, 249, 261, 285,
396); however, such studies are biased by the better
health status of women who choose to take estrogens as
opposed to those who do not and are thus likely to
overestimate any benefit (58).

Even in postmenopausal women, the small amounts
of estrogen produced endogenously are determinants
both of bone mineral density and fracture risk. In a large
population-based study it was demonstrated that women
aged 65 yr or older with serum estradiol levels between 10
and 25 pg/ml had significantly higher bone mineral density
in the hip, spine, calcaneus, and proximal radius than
those with estradiol levels below 5 pg/ml (97). Further-
more, women with undetectable serum estradiol levels
had a significantly increased risk of hip and vertebral
fractures compared with those with levels above 5 pg/ml,
and this risk was further increased in the presence of high
serum concentrations of sex hormone binding globulin
(68). These interesting and unexpected data challenge the
perception that endogenous estrogen production in post-
menopausal women does not have physiological skeletal
effects and emphasize the potential functional signifi-
cance of relatively low concentrations of the hormone in
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the bone microenvironment. In this respect, the presence
in human osteoblastic cells of 17b-hydroxysteroid dehy-
drogenases (17b-HSDs), which interconvert estradiol, and
the relatively inactive estrone (and testosterone) may be
relevant, providing a mechanism for the local regulation
of intracellular ligand supply for estrogen receptors (82).
Four isoforms of this enzyme have been cloned (6, 122,
228, 409), with 17b-HSD I and III being mainly involved in
the reduction of estrone to estradiol and testosterone to
dihydrotestosterone and 17b-HSD II and IV in the oxida-
tion of estradiol to estrone.

The relationship between the age-related decline in
serum testosterone levels and reduction in bone mineral
density in men is less well documented, and although
some studies have demonstrated such a correlation (106,
257), this finding has not been universal (244). However,
hypogonadism is believed to be an important pathoge-
netic factor in male osteoporosis (272, 341); in the major-
ity of such cases, there are no overt clinical manifesta-
tions of hypogonadism, the diagnosis being established
by the presence of low free serum testosterone levels.
Klinefelter’s syndrome is associated with low bone min-
eral density (107, 152), and castration in adult men is
followed by rapid bone loss with evidence of increased
bone turnover (345), similar changes being described af-
ter the administration of gonadotrophin-releasing hor-
mone analogs (127). The extent to which conversion of
androgens to estrogen in bone is responsible for the ef-
fects of androgens in adult men is unclear; some studies
have reported closer correlations between bone mineral
density and estrogen than androgen status (134, 199).
Furthermore, prevention by estrogens of bone loss asso-
ciated with cyproterone acetate in trans-sexual men has
been reported (220), and there is indirect evidence that
the beneficial effects of testosterone on bone mineral
density in eugonadal men with osteoporosis may be partly
mediated by conversion to estrogens (10).

IV. SKELETAL EFFECTS OF ESTROGEN:

MECHANISMS OF ACTION

Estrogen has a diverse range of actions involving
growth, differentiation, and function in many target tis-
sues. The mechanisms by which these actions are
achieved have not been fully established, but it is thought
that many of the effects of estrogen are mediated by a
genomic pathway involving ligand/receptor interaction.
The importance of nongenomic mechanisms, in which the
ligand interacts with plasma membrane receptors, is in-
creasingly recognized in the mediation of rapid responses
to estrogen (39, 393) and in the ROS osteoblastic cell line
rapid activation of mitogen-activated protein kinase by
estrogen has recently been reported (89). In addition,
there is evidence for nongenomic effects of estrogen on

osteoclasts, rapid tyrosine phosphorylation of several
proteins, including src, being reported in avian osteo-
clasts after administration of 17b-estradiol (38).

A. Estrogen Receptors

Estrogen receptors (ERs) belong to a family of ste-
roid hormone receptors that include receptors for glu-
cocorticoids, androgens, progestins, and mineralocorti-
coids (135) and can be considered as ligand-regulated
transcription factors. ERs consist of several domains,
defined according to their function (Fig. 6). The AF-1 and
AF-2 sites (activation functions 1 and 2) activate gene
transcription, with the AF-1 being constitutively active
and responsible for promotor-specific activation, indepen-
dent of the presence of ligand, whereas AF-2 is ligand
specific (20, 392). The C region contains the highly con-
served DNA-binding domain with two zinc fingers that are
essential for DNA binding (208). The classical estrogen
response element (ERE) consists of an inverted hexa-
nucleotide repeat (A/GGGTCA) separated by three nucle-
otides. The hormone binding domain is in the COOH
terminus of the molecule and is responsible for specific
ligand recognition and binding. The E region, and possibly
also the C region, contains a 90-kDa heat shock protein
function (229).

At least two main ER subtypes exist, namely, ERa
and ERb. ERa was originally cloned from the uterus (133)
and, more recently, ERb was cloned, initially from a rat
prostate cDNA library (90, 204, 254, 358). The ERb shows
close structural homology with the ERa molecule, espe-
cially in the DNA binding domain and, to a lesser extent,
in the ligand binding domain (Fig. 7). The binding affini-
ties of estradiol and other ligands including SERMs and
phytoestrogens for the two ER subtypes are very similar

FIG. 7. Structure of estrogen receptors (ER) a and b. The percent-
age figures indicate the degree of structural homology for each domain
between the two receptor subtypes; these are similar in the rat, mouse,
and human.
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(203). Several isoforms of the ERb and at least two of
ERa, created by alternative splicing or alternative initia-
tion of translation, have been demonstrated (mainly at
mRNA level); one of these does not bind estrogen and
may act as a dominant negative inhibitor of ER-mediated
activity (207).

Mice with loss of function mutations of the ERa gene
(ERKO) show only minor skeletal abnormalities with re-
duced longitudinal bone growth, particularly in females,
and modest reductions in bone mineral density which are,
in contrast, more prominent in males (66, 286). These
changes differ from those observed in human males with
ER resistance (336) or aromatase deficiency (253), in
which longitudinal growth is increased. In the ERb knock-
out model (BERKO), increased cortical bone mineral con-
tent and periosteal diameter have been reported in fe-
males, but the males exhibit a normal skeletal phenotype
(383). No effect on ovariectomy induced bone loss was
demonstrated in these mice; this observation, together
with the normal trabecular bone mineral density in the
intact females, indicates that ERb does not mediate the
protective skeletal effects of estrogen in this species. To
date, therefore, the knock-out models do not indicate a
major role for either of the two known ER subtypes in
mediating estrogen-induced effects on the skeleton, pos-
sibly reflecting the presence of other, as yet unidentified
ERs.

The tissue distribution of the ERs is overlapping but
not identical, and at least in some tissues where both
receptor subtypes exist, they are cell specific, possibly
indicating different functions (202). In keeping with the
diverse actions of estrogen, ERs are widely distributed
and are found in the central nervous system, heart, blood
vessels, mammary gland, uterus, testis, epididymus, blad-
der, ovary, kidney, intestine, prostate, and bone (90, 203,
204, 206, 254, 292, 358). However, it should be recognized

that current knowledge of the tissue distribution of the
two receptor subtypes is based mainly on localization of
mRNA rather than protein.

The presence of ER (presumably ERa) on rat and
human osteoblastic cells was first reported in 1988 (91,
276) and subsequently extended to osteoclasts (295) and
osteocytes (35). However, the relative proportion and
distribution of the two receptor subtypes in bone remains
to be established. ERb mRNA has been reported on rat
osteoblastic cells (268) and also in a human osteoblast
cell line, SV-HFO (11). Recently, Vidal et al. (382) reported
the presence of ERb mRNA in human osteoblast cell lines
and cultures and have also demonstrated the presence of
ERb protein in these cells, both in vitro and in vivo.
Furthermore, ER protein was identified in osteocytes,
where the staining was nuclear, and in osteoclasts, in
which staining was predominantly cytoplasmic. Inter-
estingly, these workers noted the presence of nuclear
and cytoplasmic staining for ERb in some bone marrow
cells, an observation consistent with the recent report
of ERb expression in megakaryocytes in human bone
marrow (33).

ERa protein has also been demonstrated in the
growth plates of rodents and rabbits, where it is localized
in the proliferative and early hypertrophic zone (184). The
observation in rats that loss of expression at sexual ma-
turity is associated with failure of epiphyseal closure is
consistent with the well-documented role of estrogen in
this process.

In target cells, 17b-estradiol diffuses through the
plasma membrane and binds to the ER (Fig. 8). On bind-
ing, heat shock proteins dissociate, and the receptor un-
dergoes a conformational change and dimerization (164,
229). The receptor/ligand complex then binds to response
elements within the promotor area of target genes, result-
ing in transcriptional activation and modulation of gene

FIG. 8. Estrogen signaling pathways. The ligand 17b-
estradiol is transported to the nucleus where it forms a
complex with the estrogen receptor (ER). This subse-
quently undergoes dimerization and conformational
change resulting in the formation of a transcriptionally
competent complex that binds to response elements in
target estrogen-sensitive genes. In addition to the classical
ERE and the AP-1 site shown in the diagram, other tran-
scription factors such as NFkB and Sp1 can interact with
the ER and modulate gene transcription.
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expression. In addition, ERs can regulate the transcrip-
tion of genes that lack classical EREs in their promotor
region by modulating the activity of other transcription
factors such as AP-1, NFkB, and Sp1 (120, 302, 342). The
conformational change that occurs in the ligand-binding
domain of the receptor enables the AF-2 function of the
ER to interact with coactivators and corepressors in a
ligand-dependent manner; in the case of 17b-estradiol,
this results in the formation of a transcriptionally compe-
tent complex and the initiation of gene transcription (154,
165, 195).

B. Effects of Estrogen on Osteoblastic Cells

A number of estrogen-induced effects on gene ex-
pression in osteoblasts have been described (275). These
include induction of TIEG, a TGF-b-inducible gene that
inhibits DNA synthesis (351), IGF-I (93, 94), and TGF-b
(274, 276). Increased BMP-6 mRNA expression has also
been reported in response to estrogen in a fetal osteoblas-
tic cell line (311). Reports on the effects of estrogen on
DNA synthesis and proliferation and bone matrix protein
production have produced conflicting results, possibly as
a result of differences in the in vitro systems investigated
and, in particular, the stage of differentiation of osteo-
blasts in these systems (275). Thus, in osteoblastic cells,
for which estrogen acts as a mitogen, increased expres-
sion of alkaline phosphatase and type I collagen has been
reported (230, 416), whereas in cells that show no prolif-
erative response to estrogen, stimulation of type I colla-
gen and osteocalcin expression have been demonstrated
with no increase in alkaline phosphatase (181). Third, in
systems in which estrogen has antiproliferative effects,
stimulation of alkaline phosphatase expression has been
reported, with suppression of osteocalcin and variable
effects on type I collagen expression (317). Estrogen also
increases expression of the receptors for 1,25(OH)2D
(95), growth hormone (163), and progesterone (334);
modulates PTH responsiveness in osteoblastic cells (93,
112); and increases expression of IGFBP-4, as well as
reducing its proteolytic breakdown (180).

C. Effects of Estrogen on Osteoclast

Differentiation and Activity

The report by Pensler et al. (295) that ERs were
present on osteoclasts has since been confirmed by a
number of groups in bone from humans (155, 277), chicks
(276), mice (150, 250), and rabbits (232). Levels of the ER
on osteoclasts are generally low and, as discussed below,
the antiresorptive effects of estrogen may largely be me-
diated by modulation of cytokine production by cells in
the bone microenvironment rather than by direct effects
on osteoclasts. However, estrogen-induced reduction in

the expression of mRNAs and secretion of several lyso-
somal enzymes, including cathepsin L, b-glucuronidase,
and cathepsin K have been reported in osteoclasts in vitro
(201, 278).

The bone-preserving action of estrogen is mediated
predominantly if not solely through effects on osteoclast
number and activity, the latter encompassing both resorp-
tive activity per se and the life span of the cell. Studies in
ovariectomized rodents have demonstrated an increase in
the proliferation and differentiation of osteoclast precur-
sors (168, 169), increased numbers of stromal/osteoblas-
tic cells (170, 190), and reduced osteoclast apoptosis
(158). These effects are, in turn, believed to be largely
mediated via cytokines involved in the regulation of os-
teoclastogenesis and osteoclastic activity. Studies in post-
menopausal women have demonstrated increased pro-
duction of IL-1, GM-CSF, and TNF-a by monocytes in the
bone microenvironment after natural or surgical meno-
pause, these changes being abrogated by the administra-
tion of exogenous estrogen (281, 282, 307). In support of
these observations, treatment with TNF binding protein
prevents bone loss in ovariectomized rats but has no
effect in estrogen-replete animals (189, 194). The increase
in IL-1 activity associated with estrogen deficiency is a
result not only of increased IL-1 synthesis but also of
decreased production of IL-1ra (283); thus treatment of
ovariectomized rats with IL-1ra decreases bone loss (191)
by blocking the proliferation and differentiation of osteo-
clast precursors (188). Mice that are unable to synthe-
size or respond to either IL-1 (8) or TNF-a (301) do not
exhibit the bone loss seen in normal animals after ovari-
ectomy, and simultaneous inhibition of IL-1 and TNF
activity is required completely to prevent bone loss after
ovariectomy in normal mature rats (189). However, these
animals have a normal bone phenotype with no evidence
of abnormal remodeling activity when sex hormone sta-
tus is normal (167). These observations emphasize the
interdependent nature of cytokine regulation; IL-1, IL-6,
and TNF-a not only induce their own synthesis but also
have synergistic autocrine effects, TNF-a and IL-1 acting
to increase production of TNF and IL-6, and PTH syner-
gizing with TNF to stimulate IL-6 production (80, 108, 167,
291).

Estrogen also inhibits the production of IL-6 by
blocking the activity of the transcription factors NFkB
and CCAAT/enhancer binding protein b that are required
for activation of the IL-6 promotor (114, 209, 303, 342). In
vivo studies in ovariectomized mice have demonstrated
increased production of IL-6 from bone marrow cells
(168) and increased expression of the IL-6 soluble recep-
tor IL-6R, through which the effects of IL-6 are mediated,
may also contribute (217). Transgenic mice overexpress-
ing IL-6 do not exhibit osteopenia or increased osteoclas-
togenesis (193, 349, 399), and IL-6-deficient mice exhibit a
normal bone phenotype, although they are protected from
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ovariectomy-induced bone loss (301). The role of IL-6 in
the pathogenesis of menopausal bone loss in women re-
mains to be fully established.

Effects of estrogen on stromal/osteoblastic cells,
which support osteoclastogenesis, have been reported.
Thus estrogen deficiency is associated with an increase in
this cell population (170), and increased synthesis of M-
CSF and osteopontin has been reported in vitro and in
ovariectomized animals (100, 190, 411). Recently, it has
also been shown that estrogen increases levels of OPG
mRNA and protein in osteoblastic cells (148). In addition,
estrogen plays an important role in the regulation of
osteoclast activity. The cytokines IL-1, IL-6, TNF-a, and
M-CSF have all been shown to inhibit apoptosis in osteo-
clasts (156, 172), whereas TGF-b, the production of which
is decreased in estrogen deficiency states, stimulates apo-
ptosis (158). Estrogen may also directly stimulate apopto-
sis by decreasing expression of NFkB-activated genes
that normally suppress apoptosis (171). Interestingly, the
reverse effect has been reported for osteocytes, acute
estrogen withdrawal in humans being associated with
increased apoptosis of osteocytes (357).

Evidence for a role of nitric oxide in bone loss asso-
ciated with estrogen deficiency is provided by the obser-
vation that nitroglycerine, a nitric oxide donor, alleviates
bone loss induced by ovariectomy in rats and that in the
presence of NG-nitro-L-arginine methyl ester, an inhibitor
of nitric oxide synthase (NOS), estrogen was ineffective
in reversing bone loss (398). This is consistent with earlier
studies in the guinea pig demonstrating estrogen-induced
regulation of the constitutive NOS enzymes, epithelial
NOS and neuronal NOS (394), and with the inhibitory
effect of high nitric oxide concentrations on osteoclasto-
genesis and osteoclastic activity (although there is some
evidence that lower concentrations of NO have a stimu-
latory effect on bone resorption) (98). Interestingly, func-
tional ERs have been demonstrated in bone endothelial
cells in vitro (36), supporting a role for estrogens in
angiogenesis and hence, potentially, access of osteoclasts
to remodeling bone surfaces (288).

The role of estrogen in the regulation of osteoclast
activity is thus mediated via effects on osteoclast number
and activity. The former action is determined both by
direct cytokine-induced effects on osteoclast prolifera-
tion and differentiation and by modulation of the stromal/
osteoblastic cell population that supports osteoclastogen-
esis. Changes in osteoclast activity are probably mediated
predominantly through effects on apoptosis.

D. Skeletal Effects of Estrogen in Animal Models

Ovariectomy leads to the development of rapid can-
cellous bone loss in some species, particularly the rat,
with an increase in osteoclast and osteoblast number and

also an increase in osteoclast size (408). In young rats,
much of the apparent cancellous bone loss occurs as a
result of increased resorption of calcified cartilage by
chondroclasts (405). Bone formation rates are increased,
consistent with high bone turnover, and these changes
persist for at least 1 yr after ovariectomy (407). Studies of
cancellous bone architecture in the ovariectomized rat
have demonstrated that bone loss is accompanied by
osteoclastic perforation and erosion of trabecular plates
without trabecular thinning (77), indicating that both the
number and activity of osteoclasts are increased in estro-
gen-deficient states. In cortical bone, increased bone re-
sorption results in an increase in the volume of the med-
ullary canal in the tibiae (175); however, there is also an
increase in bone formation at the periosteal surface that
may exceed endocortical resorption in rapidly growing
rats (362). Osteoclast numbers are increased at the en-
docortical surface. These changes, both in cancellous and
cortical bone, can be prevented by administration of es-
trogen (362, 406).

It is important to emphasize that sexually mature
rodents should be used for these models to avoid con-
founding effects of estrogen deficiency on longitudinal
growth (192). Other animals that have been studied as
models of estrogen deficiency-induced bone loss include
mice, ferrets, dog, sheep, swine, and monkeys. These
species vary in their skeletal responsiveness to estrogen
depletion and are less well established than the rat model
(121, 192).

E. Effects of Estrogen in the Human Skeleton

Histomorphometric data on the skeletal changes as-
sociated with menopausal bone loss are sparse and re-
stricted to cross-sectional studies in relatively small num-
bers of women. Some of these studies have provided
evidence for an increase in bone turnover during the
menopause, both in cortical and cancellous (37, 86, 377),
although this finding has not been universal (246). These
somewhat conflicting data contrast with results obtained
from kinetic and biochemical measurements of bone turn-
over, which have invariably demonstrated an increase in
bone turnover during menopause (143, 365). Further-
more, estrogen replacement therapy is associated with a
return to premenopausal values of biochemical markers
of bone resorption and formation. The failure of histo-
morphometric studies to demonstrate unequivocally an
increase in bone turnover in association with menopause
is likely to be attributable to several factors including the
small numbers studied, lack of prospective data, and the
large measurement variance associated with bone histo-
morphometry.

A consistent finding in untreated postmenopausal
women has been a reduction in wall width, indicating
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reduced bone formation at the cellular level and hence a
reduction in osteoblast activity (221, 377). The age at
which this reduction occurs is uncertain. Thus Lips et al.
(221) reported an age-related reduction in mean wall
width in 22 men and 14 women aged between 18 and 82
yr, whereas in another study, the age-related reduction in
women and men appeared to begin after the age of 50 yr
(377). However, the cross-sectional design of both these
studies makes it difficult to determine accurately the age
of onset of change. Whether this change is specifically
related to estrogen deficiency is uncertain; similar
changes occur in men, and conventional estrogen replace-
ment at menopause has not been demonstrated to reverse
this change. In women, an age-related decrease in wall
width has also been reported in cortical bone in some, but
not all, studies (37, 110, 166). Measurement of resorption
depth has demonstrated a small decrease or no change in
postmenopausal women, suggesting that the negative
remodeling balance is primarily due to reduced bone
formation (67, 92). However, studies of acute estrogen
deficiency in premenopausal women, induced by ad-
ministration of gonadotrophin releasing hormone ana-
logs, suggest that there may be a transient increase in
resorption depth (63). In these women, rapid and signifi-
cant disruption of cancellous bone architecture was ob-
served after 6-mo therapy; these changes are unlikely to
be due solely to increased bone turnover and would be
consistent with an early and transient increase in osteo-
clastic activity, resulting in increased cavity depth and
trabecular penetration and erosion. Furthermore, in cor-
tical bone, an increase in resorption depth within Haver-
sian systems was demonstrated in these patients (17).

The greater age-related disruption of cancellous bone
architecture in women than in men (60, 245) also supports
the contention that estrogen deficiency is associated with
increased erosion depth. Studies of cancellous bone
structure in women have clearly demonstrated a reduc-
tion in trabecular continuity and loss of whole trabeculae
after menopause. Whether there is significant trabecular
thinning is less certain; some studies have reported sig-
nificant or nonsignificant decreases in trabecular width,
whereas others have found no change (2, 25, 61, 386, 395).
The increase in trabecular separation that has consis-
tently been demonstrated in postmenopausal women may
thus mainly reflect loss of whole trabeculae rather than
trabecular thinning. It is also possible that there is pref-
erential erosion of thin trabeculae so that the contribution
of trabecular thinning to bone loss is underestimated.

There have been relatively few bone histomorpho-
metric studies of the effects of hormone replacement
therapy. Evidence that hormone replacement reduces
bone turnover was first reported by Riggs et al. (312) in a
prospective study of 17 women with established osteopo-
rosis. Iliac crest bone biopsies were obtained before and
either 2.5–4 mo (short-term) or 26–42 mo (long-term)

after estrogen replacement. After 2.5–4 mo, there was a
significant reduction in bone-resorbing but not bone-
forming surfaces, both of these being evaluated by micro-
radiography; in contrast, after 26–42 mo, there was a
significant reduction in both resorbing and forming sur-
faces. These data thus indicate that estrogen replacement
reduces bone turnover, a suppressive effect on bone re-
sorption being followed by a later decrease in bone for-
mation.

A more detailed histomorphometric analysis of the
effects of hormone replacement therapy on bone remod-
eling was later reported in a study of postmenopausal
women with established osteoporosis (344). Bone forma-
tion rate at tissue level and activation frequency, both
indices of bone turnover, were significantly decreased at
1 yr to ;50% of the pretreatment value, but no significant
changes were observed in resorption depth or wall width,
suggesting that remodeling balance was unchanged. How-
ever, because of the long life span of the bone remodeling
unit in humans and, in particular, the time required for
formation to be completed, a period of at least 2 yr is
required to demonstrate changes in wall width induced
either by disease or treatment. In contrast, because the
resorptive component of the remodeling cycle is rela-
tively rapid, changes may be seen over a much shorter
period of time. Similar changes in bone turnover were
reported in osteoporotic postmenopausal women after a
1-yr treatment with transdermal estrogen (226). Activa-
tion frequency and bone formation rate were both signif-
icantly lower in the posttreatment biopsies, bone turnover
being suppressed to well below pretreatment values. A
reduction in activation frequency, but not bone formation
rate, was also reported in a study of postmenopausal
women with low bone mineral density after treatment for
1 yr with percutaneous estradiol therapy (149). Finally, in
a 2-yr prospective treatment study in postmenopausal
women with osteopenia or osteoporosis, a significant re-
duction in bone turnover was observed; in addition, there
was a trend toward decreased resorption cavity size after
treatment, consistent with suppression of osteoclastic ac-
tivity by hormone replacement therapy and a small reduc-
tion in wall width, possibly reflecting compensatory
changes in response to the reduction in resorption cavity
size (379). In this cohort, there was no significant change
in cancellous bone structure during the study period,
indicating that hormone replacement therapy preserves
existing bone microstructure but does not reverse previ-
ously induced structural disruption (378).

These studies thus provide strong evidence that hor-
mone replacement therapy, whether given as estrogen
alone or combined with a progestin, preserves bone mass
predominantly by reducing bone turnover. The relative
contribution to this action of effects on the process of
activation per se and those on osteoclast number and
activity have not been established; a role for the latter
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mechanism is supported by the well-documented effects
of estrogen on osteoclast proliferation, differentiation,
and activity demonstrated in vitro. The effects of estrogen
administration on remodeling balance remain to be fully
defined, but there is at present no evidence that, when
given in conventional doses, estrogens increase bone for-
mation at the cellular level. It is therefore possible that
the age-related decrease in wall width may be an estro-
gen-independent phenomenon. Conversely, there is some
evidence that estrogen replacement reduces resorption
cavity size and hence improves this component of remod-
eling imbalance.

Evidence from animal studies indicates that high
doses of estrogens have anabolic skeletal effects (87,
356), but until recently, it was unknown whether similar
effects occur in the human skeleton. Percutaneous estro-
gen implant therapy has been reported to be associated
with higher bone mineral density levels than oral or trans-
dermal hormone replacement, an observation that may be
related to the higher serum estradiol concentrations as-
sociated with parenteral treatment (117, 323, 328, 347).
Many of these studies, however, were cross-sectional and
involved the coadministration of testosterone implants,
thus providing only indirect evidence for an anabolic
skeletal effect of estrogen.

Recently, Wahab et al. (385) reported high bone min-
eral density values in a cohort of women who had re-
ceived long-term high-dose estradiol implant therapy,
without testosterone. A histomorphometric assessment of
iliac crest bone from a subgroup of this cohort was per-
formed, and the values obtained compared with those of
healthy premenopausal women (375), based on the ratio-
nale that significant age-related bone loss had not oc-
curred in the patient group before estradiol replacement
and that any differences between the two groups would
therefore reflect effects of high dose as opposed to phys-
iological estrogen replacement. The results of this study
demonstrated a significantly higher wall width in the im-
plant-treated group (Fig. 9), providing direct histological
evidence that high-dose estrogens produce anabolic skel-
etal effects in postmenopausal women and indicating that
these are achieved by stimulation of osteoblastic activity,
resulting in increased bone formation at cellular level and
hence a more positive remodeling balance.

These findings have recently been confirmed in a
prospective study of women undergoing treatment with
estradiol implant therapy (185). In this study, not only was
a significant increase in wall width observed, but changes
indicative of increased connectivity of cancellous bone
structure were also demonstrated. This raises the inter-
esting possibility that the anabolic skeletal effects asso-
ciated with high-dose estrogen therapy in postmeno-
pausal women may result not only from improvement in
remodeling balance but also de novo bone formation; the
latter mechanism has been described in mice (326), but

further studies are required to investigate its potential
contribution to the observed changes in the human skel-
eton.

V. EFFECTS OF PROGESTERONE ON BONE

Relatively little is known about the effects of proges-
tins on bone metabolism. Normal human osteoblastic
cells express progesterone receptors (196), and stimula-
tion of the proliferation and differentiation of these cells
has been reported in response to relatively high doses of
progesterone (46). In the ovariectomised rat model, pro-
gesterone was reported to have similar effects to estrogen
in one study (15) but antagonistic actions in another
(360).

Menopausal estrogen therapy in women with an in-
tact uterus is combined with a progestin to prevent in-
crease in endometrial cancer risk associated with the use
of unopposed estrogen. Some of the progestrogens used
in these formulations, particularly 19-nortestosterone de-
rivatives, may independently have beneficial effects on
bone mass, although the evidence in this area is conflict-
ing (3, 5, 316, 331). Thus preservation of bone mineral
density in postmenopausal women treated with norethis-
terone was demonstrated in metacarpal cortical bone (3),

FIG. 9. Wall width in women treated with high-dose, long-term
estradiol and normal premenopausal women. High-dose estradiol ther-
apy was associated with a significantly higher wall width than that found
in normal premenopausal women, reflecting increased bone formation
at the cellular level due to increased osteoblastic activity. Data are
shown as means 6 SD. (From Compston JE. The skeletal effects of
oestrogen depletion and replacement: histomorphometrical studies. In:
Annual Review of the Management of Menopause, edited by Studd
J. Carnforth, Lancs, UK: Parthenon, 2000, p. 287–296.)
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but Hart et al. (142) reported that norgestrel therapy was
associated with significant bone loss at this site in a
similar cohort. In a study of the effects of medroxypro-
gesterone in early postmenopausal women, Gallagher et
al. (114a) demonstrated preservation of total body bone
mineral density (reflecting predominantly cortical bone)
but significant losses at the spine, forearm, and metacar-
pal cortex. Consistent with these findings, Adachi et al.
(5) were unable to demonstrate any beneficial effect of
medroxyprogesterone on bone mineral density in the lum-
bar spine or proximal femur in postmenopausal women
taking estrogen replacement therapy. However, increases
in bone mineral density have been reported in premeno-
pausal women treated with cyclic medroxyprogesterone
for menstrual disturbances (304).

The issue of whether decreased ovarian progester-
one production is associated with changes in bone min-
eral density is also controversial. Prior et al. (305) re-
ported decreased spinal bone mineral density in women
with anovulatory cycles or cycles with short luteal
phases, both of which are associated with reduction in
endogenous progesterone production. Serum estradiol
levels were reportedly normal in these women, indicating
a role for progesterone deficiency in the pathogenesis of
low bone mineral density. However, other studies in
which documentation of ovulatory and hormonal status
was more accurate and detailed (79, 144, 388) indicate
that, provided that adequate estradiol status is maintained
throughout the menstrual cycle, reduced progesterone
production resulting from shortened luteal phases does
not adversely affect bone mineral density. There is no
evidence that combined estrogen/progestin therapy is
more effective in reducing fracture risk than estrogen
alone (404).

VI. SKELETAL EFFECTS OF ANDROGENS:

MECHANISMS OF ACTION

Androgens have important effects on bone develop-
ment and homeostasis. Increasing recognition of the mor-
bidity and mortality attributable to osteoporosis in men
has stimulated considerable interest in recent years in the
mechanisms by which androgens act on bone. Neverthe-
less, knowledge in this area remains relatively sparse
compared with the rapid advances that have been made in
understanding estrogen-induced effects on the skeleton,
and the treatment of osteoporosis in men remains largely
unexplored.

A. Androgen Receptor

The androgen receptor was cloned in 1988 (49, 225),
and its presence was subsequently demonstrated in rat
and human osteoblastic cell lines and normal human os-

teoblast cells in vitro (56, 270, 369) and in human bone in
situ (4). In the latter study, receptors were expressed
in hypertrophic chondrocytes, osteoblasts, osteocytes,
mononuclear cells, and endothelial cells of blood vessels
in the bone marrow. The binding affinity appears to be
similar for testosterone and dihydrotestosterone (DHT)
(19).

B. Local Metabolism of Sex Steroids

Although testosterone is the major circulating andro-
gen, there is evidence that its skeletal effects are at least
partially mediated by metabolites produced by enzymes
present in bone (Fig. 10). Thus the presence both of
aromatase (262, 414), which converts testosterone to es-
tradiol and androstenedione and dehydroepiandrosterone
(DHEA) to estrone, and 5a-reductase (329, 384), which
reduces testosterone to androstenedione and DHT, has
been reported in bone. In addition, androstenedione can
be converted locally to testosterone by 17b-HSD (40).
Case reports of a male with ER resistance and of patients
with aromatase deficiency emphasize the importance of
normal aromatase activity for bone health in both sexes.
Thus, in a 28-yr-old man with a point mutation of the ER
gene, complete estrogen resistance was associated with a
severe defect of skeletal growth resulting in delayed
epiphyseal closure and bone age, tall stature, increased
bone turnover, and severely reduced bone mineral density
for his chronological age, although not for bone age (336).
Manifestations of aromatase deficiency in females include
pubertal failure and delayed bone age (253), whereas in a
male with a homozygous mutation and severe aromatase
deficiency, the phenotype was characterized by tall stat-
ure, delayed skeletal maturation, and osteopenia (253).
Subsequently, another male with aromatase deficiency
and similar clinical features has been described; estrogen
therapy was associated with a large increase in bone
mineral density and closure of the epiphyses (48). These
clinical observations demonstrate that estrogens have an
important physiological role in the male skeleton, but do
not exclude a role for androgens (368).

C. Effects of Androgens on Osteoblastic Cells

Effects of androgens on osteoblastic cells have been
demonstrated both in animals and humans. Stimulation of
proliferation of these cells and possibly also of their dif-
ferentiation has been reported (178) with increased ex-
pression of TGF-b mRNA (19, 177) and increased respon-
siveness to FGF and IGF-II (177). Other reported effects
on osteoblastic cells include inhibition of the cAMP re-
sponse to PTH or PTH-related peptide (113, 132), reduced
prostaglandin production in stimulated calvarial organ
cultures (300), and inhibition of IL-6 production by stro-
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mal cells (18). Increased production of type I collagen has
also been reported (19, 132), although this finding has not
been universal (46, 300).

D. Skeletal Effects of Androgens in Animal Models

In vivo animal studies have shown that androgens
promote chondrocyte maturation, metaphysial ossifica-
tion, and the growth of long bones; this contrasts with the
effect of estrogens that promote epiphysial closure and
hence reduce longitudinal growth (271). The effects of
androgens on bone growth are manifest particularly by an
effect on bone size, with male animals having both larger
bones and thicker cortices than their female counterparts
(179, 361). In growing male rats and mice, castration is
associated with a reduction in cortical and cancellous
bone mass (146, 269, 370), probably due to an increase in
bone turnover and in osteoclastic activity (360). Unlike
the response to ovariectomy in female animals, however,
the reduction in cortical bone mass appears to be pre-
dominantly due to decreased periosteal bone formation
(360, 363). In mature rats, castration is also associated
with cortical and cancellous bone loss (137, 367), with
evidence of increased bone turnover in the first few
months after castration followed by a lower turnover
state (137, 371, 380).

A number of studies support the contention that both
estrogens and androgens are required for normal skeletal
health in males and females. Thus the administration of
flutamide, a specific androgen receptor antagonist, to fe-

male rats results in osteopenia, indicating a role for an-
drogens in the female skeleton (128). In support of these
findings, Lea et al. (213) reported that the antiandrogen
compound Casodex inhibited the protective effects of
androstenedione on ovariectomy-induced bone loss,
whereas administration of an aromatase inhibitor was
ineffective. Furthermore, in female rats, nonaromatizable
androgens have been shown to prevent or reverse bone
loss induced by ovariectomy, these effects being medi-
ated by a reduction in bone turnover in cancellous bone
and increased periosteal and endosteal bone formation
(355, 363). The skeletal effects of castration in male ani-
mals can be prevented by the administration both of
testosterone and nonaromatizable androgens, indicating
that aromatization of androgens to estrogen cannot be
wholly responsible for androgenic skeletal effects (176,
338, 363, 387). Administration of the type II 5a-reductase
inhibitor finasteride, which blocks conversion of testos-
terone to 5a-dihydroxytestosterone, has no effect on bone
density in rodents or humans (237, 320), although these
findings may be explained in part by the presence of type
I 5a-reductase in bone (325). Estrogens have also been
reported to prevent orchidectomy-induced bone loss in
rats (372). Finally, in the testicular feminized (Tfm) rat,
which is androgen receptor deficient, cancellous bone
volume is similar to that of normal male littermates, but
orchidectomy, which removes the source of estrogen pro-
duction, prevents the attainment of normal cancellous
bone volume, suggesting a role for estrogen in bone de-
velopment in growing animals (371, 373).

FIG. 10. Local metabolism of androgens and estrogens
in bone cells by 5a-reductase and aromatase enzymes.
DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone.
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E. Effects of Androgens in the Human Skeleton

The mechanisms by which androgen depletion and
repletion affect the human skeleton have been little stud-
ied. Studies in men undergoing orchidectomy or rendered
hypogonadal by administration of gonadotrophin releas-
ing hormone analogs (127) have shown rapid bone loss
associated with an increase in biochemical markers of
bone resorption and formation, indicating increased bone
turnover. However, in the absence of histomorphometric
data, it is not possible to ascertain the effects of androgen
deficiency on remodeling balance or on cancellous or
cortical bone architecture. Similarly, the mechanisms un-
derlying age-related bone loss in men have not been
clearly established, although the wall width falls with age
(376), indicating reduced osteoblastic activity, and the
better preservation of bone architecture than that ob-
served in ageing women indicates that increased activity
of osteoclasts may be less prominent, although there may
be some increase in bone turnover (67).

Similarly, data on the mechanisms by which exog-
enously administered androgens affect the skeleton are
very sparse. Those that exist indicate that androgens
preserve bone mass predominantly by reducing bone
turnover (10), but this finding has not been universal and
further studies are required.

There is also evidence that androgens play an impor-
tant role in the female skeleton (333, 369). Thus in females
affected by the androgen insensitivity syndrome, there is
resistance to androgens, and endogenous estrogen pro-
duction is also reduced. Low bone mineral density is a
frequent finding in these patients (339) even in those
women treated with long-term estrogen replacement (215,
256, 258). Furthermore, the addition of testosterone to
estrogen replacement in normal postmenopausal women
has been reported to result in higher bone mineral density
values than treatment with estrogen alone (356), and
there is some evidence that age-related bone loss in
women is related to serum androgen levels (222, 223).

VII. SELECTIVE ESTROGEN RECEPTOR

MODULATORS

A. Early Selective Estrogen Receptor Modulators

Selective estrogen receptor modulators (SERMs) are
compounds that exhibit tissue specificity, with estrogenic
effects in some tissues and antiestrogenic effects in oth-
ers. The first of these compounds developed for clinical
use was clomiphene, which is used in the treatment of
infertility in women, but it was the example of tamoxifen,
which was developed as an antiestrogen for the treatment
of breast cancer and subsequently shown to have estro-
genic effects on the skeleton and endometrium, which

particularly illustrated the potential therapeutic benefits
of SERMs (57). Tamoxifen is widely used in the treatment
of breast cancer and also prevents bone loss in postmeno-
pausal women (224); histomorphometric studies indicate
a similar mechanism of action to that of estrogen, the
predominant effect being a reduction in bone turnover
(402, 403). However, its use in the management of osteo-
porosis in healthy women is precluded by estrogenic ef-
fects on the endometrium, which result in an increased
risk of endometrial cancer (105). Concurrent with and
subsequent to the development of tamoxifen, other com-
pounds were investigated with the aim of producing the
pharmacological profile of the “ideal” estrogen, namely,
one that exerts the beneficial effects of estrogen, for
example, in the skeleton and cardiovascular system with-
out its adverse effects, particularly in the breast and
endometrium. A significant step in this direction has been
the development of raloxifene, a synthetic benzothio-
phene, which is licensed in many parts of the world for
prevention and treatment of postmenopausal osteoporo-
sis. The chemical structure of raloxifene is shown in
Figure 11.

B. Skeletal Effects of Raloxifene

Studies both in animals and humans have shown
beneficial effects of raloxifene in bone, similar to those
observed with estrogen. Thus, in the ovariectomized rat
model, raloxifene has protective skeletal effects both
when given at the time of ovariectomy and after bone loss
has become established (27, 327, 359). In keeping with its
antiresorptive mechanism of action (99), the main effect
is to prevent rather than restore bone loss. In postmeno-
pausal women, raloxifene prevents bone loss at multiple
skeletal sites both at the perimenopause (76) and in later
years (95, 227) and, furthermore, significantly reduces
vertebral fracture risk in women with osteoporosis (227,
360). Although there are no published reports directly
comparing the effects of estrogen and raloxifene on bone
mineral density, the increases observed with raloxifene in

FIG. 11. Chemical structure of raloxifene.

436 JULIET E. COMPSTON Volume 81



the spine and femur of 1.6 and 1.2% at 2 yr in healthy
perimenopausal women and 2.4 and 2.1%, respectively, in
women with postmenopausal osteoporosis treated for 3
yr are generally lower than those reported in studies
conducted in similar populations with hormone replace-
ment therapy. This may indicate that raloxifene has
weaker effects on the skeleton than estrogen, although
whether these differences in bone mineral density have a
significant impact on fracture reduction is uncertain,
since no adequately powered prospective randomized
studies of the effects of estrogen on vertebral fracture
have been reported, and evidence for protection against
nonvertebral fracture is almost exclusively based on ob-
servational studies. It is, however, of interest that no
reduction in nonvertebral fracture has been demonstrated
for raloxifene in women with postmenopausal osteoporo-
sis, since trials in comparable populations with another
group of drugs, the bisphosphonates, have shown such
reductions in smaller trials in which the nonvertebral
fracture rate in the control group was comparable to that
seen in the raloxifene study (26, 141).

Unlike estrogen and tamoxifen, raloxifene does not
have agonistic effects on the endometrium, thus avoiding
unwanted vaginal bleeding and increased risk of endome-
trial cancer. Furthermore, a highly significant reduction in
breast cancer has been observed in women treated with
raloxifene for a median of 40 mo (69). Other potential
long-term benefits of raloxifene (and estrogen replace-
ment) include protection against cardiovascular disease
and improvement in cognitive function, but these have
not been firmly established for either estrogens or
SERMs, although they are currently being investigated in
large prospective clinical studies.

C. Mechanisms for Tissue Specificity of SERMs

The mechanisms by which SERMs exhibit tissue
specificity have not been clearly established, but recent
progress in defining estrogen signaling pathways has pro-
vided some insight as to potential modes of action (202,
229). The existence of at least two ER subtypes with a
differential tissue distribution and, in cells where both are
present, the ability (demonstrated in vitro but not in vivo)
to form either homodimers or heterodimers provides a
potential mechanism for tissue specificity that could be
ligand specific (90, 203, 205, 284, 296). Furthermore, de-
pending on the ligand and response element, the two ER
subtypes may signal in different ways; thus, at AP-1 sites,
17b-estradiol interacts with ERa to activate transcription,
whereas with ERb, this ligand inhibits transcription. Con-
versely, tamoxifen and raloxifene activate transcription
with both ERa and ERb at AP-1 sites (284). Both estrogen
and raloxifene stimulate transcription of the TGF-b3
gene, but raloxifene is considerably more potent in this

respect; it has been shown that the TGF-b3 gene contains
a response element termed the raloxifene response ele-
ment (RRE) to which raloxifene binds after the interac-
tion of the ERa with additional “adaptor” protein(s) (412).
Third, ligands may have differential effects at the AF-1
and AF-2 sites. Thus, in some cell lines, tamoxifen acts
with the ERa as an AF-1 agonist and an AF-2 antagonist
(16, 243, 391) (although this is not seen with ERb), and
while the AF-1 domain is required for estrogen- but not
raloxifene-induced activation of the TGF-b3 gene, dele-
tion of the AF-2 domain inhibits raloxifene-induced acti-
vation but not that due to estrogen (186). Finally, ligand-
specific conformational changes in the ligand-binding
domain of the receptor determine the surfaces by which
the ER interacts with regulatory proteins and thus affects
gene transcription (41, 242, 332). In the case of raloxifene,
for example, it has been shown that the alkylaminoethoxy
side chain interacts directly with aspartate-351 of the
ERa, displacing helix 12 and thus preventing the AF-2
from activating gene transcription (41).

VIII. CONCLUSIONS AND

FUTURE PERSPECTIVES

The last few decades have seen significant advances
in our understanding of how estrogens affect bone, and
these have been translated into improvements in the man-
agement of osteoporosis. However, many issues remain
unresolved, and recent discoveries about bone physiology
and biology pose further questions. The challenge for the
immediate future is to define more clearly the mecha-
nisms by which estrogens affect bone cell formation and
activity and to make progress in the relatively unexplored
area of androgens and bone.

In the past few years major new areas of research
have emerged. The realization that estrogen is essential
for skeletal health in men has led to a reexamination of
the etiology of male osteoporosis and the metabolism of
sex steroids in the bone microenvironment. The demon-
stration, in animals, that high doses of estrogens have
anabolic effects in bone has been extended to the human
skeleton and may lead to a better understanding of the
mechanisms by which such effects can be achieved.
Third, the recognition that compounds developed as an-
tiestrogens could exhibit tissue specificity, with a mixture
of agonistic and antagonistic effects, has provided a basis
for the concept of SERMs; the subsequent and ongoing
discoveries related to estrogen signaling indicate the po-
tential for improvement of the pharmacological profile of
these compounds. The goal of the “ideal” estrogen, which
provides protection against many of the major diseases of
the postmenopause, has not yet been realized but is be-
coming a possibility. Furthermore, the lessons learned
from the SERMs should be applicable to other steroid
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hormones, such as androgens and glucocorticoids, the
therapeutic value of which is currently limited by adverse
effects.
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