
Systemic and Local Regulation of the Growth Plate

B. C. J. VAN DER EERDEN, M. KARPERIEN, AND J. M. WIT

Departments of Pediatrics (B.C.J.v.d.E., M.K., J.M.W.) and Endocrinology and Metabolic Diseases (M.K.), Leiden University
Medical Center, 2300 RC Leiden, The Netherlands

The growth plate is the final target organ for longitudinal
growth and results from chondrocyte proliferation and dif-
ferentiation. During the first year of life, longitudinal growth
rates are high, followed by a decade of modest longitudinal
growth. The age at onset of puberty and the growth rate dur-
ing the pubertal growth spurt (which occurs under the influ-
ence of estrogens and GH) contribute to sex difference in final
height between boys and girls. At the end of puberty, growth
plates fuse, thereby ceasing longitudinal growth. It has been
recognized that receptors for many hormones such as estro-
gen, GH, and glucocorticoids are present in or on growth plate

chondrocytes, suggesting that these hormones may influence
processes in the growth plate directly. Moreover, many
growth factors, i.e., IGF-I, Indian hedgehog, PTHrP, fibroblast
growth factors, bone morphogenetic proteins, and vascular
endothelial growth factor, are now considered as crucial reg-
ulators of chondrocyte proliferation and differentiation. In
this review, we present an update on the present perception
of growth plate function and the regulation of chondrocyte
proliferation and differentiation by systemic and local regu-
lators of which most are now related to human growth
disorders. (Endocrine Reviews 24: 782–801, 2003)
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I. The Growth Plate

THE GROWTH PLATE is a highly organized cartilage
structure entrapped between the epiphyseal and me-

taphyseal bone at the distal ends of the long bones. Longi-
tudinal growth takes place by a process called endochondral
ossification, in which a cartilaginous scaffold is replaced by
bone in a coordinated fashion. The growth plate can be di-
vided into horizontal zones of chondrocytes at different
stages of differentiation (Fig. 1) (Ref. 1).

A. Structural organization

The process of chondrocyte proliferation and differentia-
tion has been reviewed in detail previously (1–3). Of partic-
ular interest are the early studies in human femoral growth
plates, describing the relationship between growth velocity,
chondrocyte proliferation rate, and hypertrophic cell height,
being profoundly different from that of rodents and rabbits
(4, 5).

At the epiphyseal end of the growth plate, the reserve
zone, also called germinal or stem cell zone, contains the
resting chondrocytes. These cells have recently been shown
to be crucial for orientation of the underlying columns of
chondrocytes and therefore unidirectional bone growth,
probably by secreting a growth plate-orienting factor (6).
Upon some unknown trigger, the stem cells enter into the
proliferating zone. In this matrix-rich zone, the flattened
chondrocytes undergo cell divisions in a longitudinal direc-
tion and organize in a typical columnwise orientation. They
synthesize substantial amounts of extracellular matrix
(ECM) proteins, which are essential for the structure of the
growth plate matrix. At a given moment, either by a finite
number of cell divisions or by changes in exposure to a local
growth factor (for example PTHrP; see Section IV.B) (7, 8),
proliferating chondrocytes lose their capacity to divide and
start to differentiate and become prehypertrophic, coinciding
with an increase in size. Their location is called the transition
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zone. They then further progress in the differentiation path-
way to become hypertrophic chondrocytes, which have a
round appearance and secrete large amounts of matrix pro-
teins. This stage is characterized by an increase in intracel-
lular calcium concentration. This is essential for the produc-
tion of matrix vesicles, which are small membrane-enclosed
particles that are released from chondrocytes (9, 10). They
contain large amounts of annexins, which mediate calcium
uptake into the matrix vesicles (11, 12). The vesicles secrete
calcium-phosphates, hydroxyapatite, and matrix metallo-
proteinases (MMPs), resulting in mineralization of the ves-
icles and their surrounding matrix. The mineralization pro-
cess, in combination with low oxygen tension, attracts blood
vessels from the underlying primary spongiosum (13). Sub-
sequently, the mineralized chondrocytes undergo pro-
grammed cell death (apoptosis), leaving a scaffold for new
bone formation. The apoptotic process is, among other fac-
tors, regulated by elevated intracellular calcium levels (lead-
ing to activation of proteases, lipases, and nucleases), retinoic
acids, and vitamin D (12, 14–17). In particular, vitamin D
deficiency resulting in childhood rickets is associated with
failure of growth plate calcification, vascularization, and sub-
sequent decrease in bone formation, phenomena that have
also been observed in rachitic mice (18, 19). Longitudinal and
transverse septae, which keep the chondrocytes in a col-
umnwise orientation, are resorbed by chondroclasts or os-
teoclasts from the underlying primary spongiosum (20, 21).
At the same time, osteoblasts enter the area to lay down new
metaphyseal trabecular bone. The combination of chondro-
cyte proliferation, the enlargement of maturing chondrocytes
in the hypertrophic zone, and the production of ECM are the
major contributors to longitudinal bone growth.

B. Extracellular matrix proteins

The chondrocytes are embedded in a surrounding matrix
(ECM), which provides support to the chondrocytes and
consists of ECM molecules, ECM remodeling enzymes, and
various growth factors. The first group of ECM molecules
consists of the collagens, of which types II, IX, and X are

expressed predominantly in the proliferating, prehypertro-
phic, and hypertrophic zones, respectively, and are pivotal
for the integrity of the ECM (22). Additionally, they play an
essential role in sequestering various growth factors in-
volved in the regulation of chondrocyte proliferation and
differentiation. Gene mutations in type II, IX, or X collagens
have been associated with disturbances of the cartilage ma-
trix causing spondyloepiphyseal dysplasia and hypochon-
driasis, multiple epiphyseal dysplasia, or Schmid metaphy-
seal chondrodysplasia, respectively (23–26). These
dysplasias are all associated with short stature (Table 1).

Another group of ECM molecules comprises the proteo-
glycans, including aggrecan, biglycan, glypican, and chon-
droitin, which all require free sulfate groups for their acti-
vation and cross-linking of the ECM. Synthesis of
undersulfated proteoglycans, for example by mutations in
the diastrophic dysplasia sulfate transporter (DTSTD) gene,
causes several forms of autosomal recessive chondrodyspla-
sias, including diastrophic dysplasia, atelosteogenesis type
II, and achondrogenesis type 1B (27).

Communication exists between the ECM and cellular re-
sponses within the chondrocyte through cell surface adhe-
sion receptors, known as integrins. They mediate the attach-
ment of the chondrocytes to the surrounding ECM
macromolecules, thereby increasing the integrity of the
growth plate (28).

Furthermore, there is a group of ECM-remodeling en-
zymes, known as MMPs and their inhibitors (tissue inhibitor
of MMP). These play a crucial role in the remodeling and
degradation of the ECM and are involved in the preservation
of the ECM integrity and the initiation of angiogenesis (29,
30). Mice lacking MMP-9, for instance, display abnormal
growth plate vascularization and bone formation (31),
whereas disruption of tissue inhibitor of MMP-1 in mice
increases basement membrane invasiveness of primitive
mesenchyme (precursor of chondrocyte) cells in vitro (32).
Moreover, MMP-13 (collagenase-3) has been shown to be
crucial for remodeling of the matrix in the transition zone of
the growth plate (33). Inhibition of MMP-13 inhibits degra-

FIG. 1. Functional organization of the
growth plate. See text for details.
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dation of collagen II, which is predominant in the prolifer-
ating zone and suppresses the expression of collagen X,
which is the major collagen of the hypertrophic zone (33). The
ECM also functions as a reservoir of various growth factors
that may be released and may influence chondrocyte func-
tion when the ECM is degraded. Moreover, the ECM may
control the diffusion capacity of growth factors, including
fibroblast growth factors (FGFs) and hedgehogs, which will
be discussed later.

The role of the ECM is crucial for the integrity of cartilage
and for normal longitudinal growth, but the interaction be-
tween collagens, MMPs, integrins, and the multitude of
growth factors within the ECM is still far from understood.

II. Longitudinal Growth

Longitudinal bone growth is the result of chondrocyte
proliferation and subsequent differentiation in the epiphy-
seal growth plates of the long bones. It is regulated by a
multitude of genetic and hormonal factors, growth factors,
environment, and nutrition (34–38). All of these contribute
to establishing the final height of an individual. There are at
least three distinct endocrine phases of linear growth during
postnatal life in man. A high growth rate is observed from
fetal life, with a rapid deceleration up to about 3 yr of age.
The second phase is characterized by a period of lower,
slowly decelerating growth velocity up to puberty. The last
phase, puberty, is characterized by an increased rate of lon-

gitudinal growth until the age of peak height velocity has
been reached. Then, growth velocity rapidly decreases due
to growth plate maturation in long bones and spine, leading
to growth plate fusion and cessation of longitudinal growth
(39, 40). Recently, the process and moment of growth plate
fusion has been elegantly studied by Turner and co-workers
(41), who determined the number of bony bridges between
the epiphysis and metaphysis by microcomputed tomogra-
phy in rats between 2 and 25 months of age. Although it is
generally believed that cessation of growth succeeds growth
plate fusion, this has recently been disputed by Parfitt (42).
He observed cessation of growth of a metacarpal in a patient
with pseudohypoparathyroidism, which was followed later
by fusion of the growth plate. In support of this, a recent
study in aged rats has shown that, despite cessation of
growth, growth plates still exist with sporadic chondrocyte
proliferation (43). Many studies, including those with trans-
genic mice models, have provided useful information con-
cerning growth velocity and timing of puberty in humans
and sexual maturation in rodents, which will be mentioned
in the sections dealing with the various hormones and
growth factors influencing these processes.

A. Growth disorders

Disturbances of longitudinal bone growth occur quite fre-
quently with a high diversity in etiology. In Table 1, causes
of short and tall stature are summarized, some of which are

TABLE 1. Examples of causes of short and tall stature in man

Short stature Tall stature

Primary disorders
Chromosomal disorders Chromosomal disorders

Down syndrome, Turner syndrome 47,XXY (Klinefelter syndrome) and variants
Genetic syndromes with dwarfism Genetic syndromes associated with overgrowth

Achondroplasia, hypochondroplasia, and thanatophoric
dysplasiaa (FGFR3)

Sotos, Marfan, Weaver syndrome, homocystinuria

Jansen’s metaphyseal chondrodysplasia and Blomstrand
osteochodrodysplasiaa (type 1 PTH/PTHrP receptor)

Hereditary multiple exostoses (EXT)
Spondyloepiphyseal dysplasia and hypochondriasis, multiple

epiphyseal dysplasia, or Schmid metaphyseal
chondrodysplasia (type II, IX, and X collagen)

Noonan syndrome
Intrauterine growth retardation

Genetic syndromes with neonatal macrosomia
Beckwith-Wiedemann, Simpson-Golabi-Behmel

Secondary disorders
GH deficiency GH excess, pituitary gigantism

Pit-1, Prop-1, GHRHR, or GH deficiency GH-secreting tumors (pituitary adenoma, McCune Albright
syndrome, multiple endocrine adenomatosis type 1), GHRH
secreting tumors

GH resistance

Hyperthyroidism
Laron syndrome (GHR), IGF-I deficiency

Hypothyroidism
Familial glucocorticoid deficiencyMalnutrition
HyperinsulinismCeliac disease, food deprivation, anorexia nervosa

Lipodystrophy syndromesRenal failure
Sex hormone deficiency or resistance

Androgen insensitivity syndrome (AR), testosterone synthesis
disorders, estrogen resistance (ER), aromatase deficiency

Glucocorticoid excess

(Pseudo)precocious puberty

Hypercortisolism, GC-treatment regimens

Central and pseudo-precocious puberty

Idiopathic short stature Familial tall stature

Currently known genes responsible for the particular disorder are mentioned in parentheses.
a Growth disorders that are not compatible with life.
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discussed here. Both short and tall stature disorders are di-
vided into primary (defect presumed in bone/cartilage), sec-
ondary (defect located outside bone/cartilage), or idiopathic
(cause unknown) growth disorders (44).

Short or tall stature does not necessarily lead to clinical
problems during childhood and puberty, but psychosocial
problems may occur in this vulnerable period of life. Exam-
ples are social withdrawal, practical problems relating to
clothing and shoes, fear about future compatible partners
and career planning, and (only in case of tall stature) a ky-
photic posture (45).

B. Catch-up growth

Many systemic diseases impair longitudinal bone growth.
Interestingly, after remission, growth often accelerates be-
yond the normal growth rate for that particular age, a phe-
nomenon called catch-up growth (reviewed in Ref. 46). This
has been observed in many growth-retarding conditions
such as Cushing syndrome (47), hypothyroidism (48), celiac
disease (49), anorexia nervosa/malnutrition (47), and GH
deficiency (46).

To explain catch-up growth, it was originally believed that
a mechanism exists in the brain that compares the actual
body size with an age-appropriate set point and adjusts the
growth rate accordingly, and this is termed “sizo-stat” (50).
This neuroendocrine hypothesis was challenged by an ex-
perimental study in the rabbit. In this experiment, dexa-
methasone was infused by an osmotic minipump directly in
the tibial growth plate, which slowed bone growth of the
treated leg but not of the contralateral vehicle-treated leg
(51). When dexamethasone infusion was abrogated, tibial
bone growth was not just normalized but even increased
compared with the contralateral leg, thereby demonstrating
catch-up growth (51). Based on these findings, Gafni and
Baron (52) proposed that the underlying mechanism for
catch-up growth was intrinsic to the growth plate, also
termed growth plate hypothesis. A mechanism explaining
catch-up growth may be that a maximum number of cell
divisions exist for growth plate chondrocytes and that at each
cell division the proliferation rate decreases, a process
termed senescence. Growth retardation reduces chondrocyte
proliferation, leaving them less senescent; when remission
takes place, these cells have a greater proliferating potential,
explaining the increased growth rate compared with the
unaffected growth plate. This was recently supported by im
estrogen injections in rabbits resulting in a more rapid se-
nescence of growth plate chondrocytes, causing proliferative
exhaustion and earlier growth plate fusion compared with
nontreated rabbits (53). Still, these studies have all been per-
formed in animals, and their pattern of catch-up growth is
quite different from that of humans. For example, in a child
who catches up, height velocity can be four times that of
normal growth, whereas in rats and rabbits the growth ve-
locity increment is minimal. To date, additional studies are
required in humans to generate a more solid and satisfactory
hypothesis for the process of catch-up growth (46, 54).

III. Hormonal Regulation

The major systemic hormones that regulate longitudinal
bone growth during childhood are GH and IGF-I, thyroid
hormone (T3 and T4), and glucocorticoids (GC), whereas
during puberty the sex steroids (androgens and estrogens)
contribute a great deal to this process. For most hormones the
effects on longitudinal growth and final height have been
accurately described, but many of the molecular mechanisms
underlying these effects have remained unclarified to date.
In this review, the focus lies on the hormonal effects on
longitudinal growth during childhood and puberty. For each
hormone, important clinical data will be presented, followed
by crucial in vitro and in vivo data from animal studies. The
role of genetic factors, environmental influences, and nutri-
tion on longitudinal bone growth should not be underesti-
mated, but they will not be discussed here.

A. GH-IGF-I system

Before birth, IGF-I and -II are believed to be the key reg-
ulators of growth, and largely independent of GH. This is
based on findings in knockout mice, as well as on experi-
ments of nature in the human; in congenital GH deficiency,
birth length is only mildly diminished, whereas in the boy
with congenital IGF deficiency birth size was severely di-
minished (55). After birth, GH is an important modulator of
longitudinal bone growth and appears, together with IGF-I,
the central player of the hypothalamus-pituitary-growth
plate axis. GH secretion from the pituitary is tightly con-
trolled by the activity of GHRH (stimulator) and somatosta-
tin (inhibitor), which are released by the hypothalamus. With
the discovery of ghrelin, the endogenous ligand with similar
actions as the synthetic GH secretagogues (GHS) developed
earlier, and the GHS receptor, a new physiological dimension
in the regulation of GH secretion has arisen (56). Despite the
increased complexity, it has become apparent that GHS acts
synergistically with GHRH on GH release, making it a prom-
ising therapeutic strategy for GH-deficiency disorders (57).
GH is secreted in a pulsatile fashion, which is more regular
with higher peak levels in boys, whereas in girls GH secretion
is more irregular (58). A pituitary adenoma in childhood or
adulthood causes enhanced GH secretion, leading to pitu-
itary gigantism or acromegaly, respectively (Table 1) (59, 60).
Conversely, defects in the formation of GH-secretory cells
(e.g., by Prop-1 or Pit-1 mutations), synthesis or release of GH
(e.g., by GHRH-receptor or Pit-1 mutations, GH-gene dele-
tions, and other forms of GH deficiency), or GH insensitivity,
including defects in the GH receptor (GHR) and IGF-I de-
letion, all result in severe dwarfism (Table 1) (61–65).

1. Hypotheses for the action of GH and IGF-I on longitudinal
growth. GH acts on its target tissue either directly or through
two intermediates: IGF-I and IGF-II. They were called insu-
lin-like due to their similarity in structure and activity com-
pared with insulin. IGF-II is essential for normal embryonic
growth (66), whereas IGF-I is a ligand that has a continuous
function throughout development and adulthood (67). The
role of IGF-II after birth remains less clear, especially because
there are clear species differences in IGF-II expression after
birth in bone. There is now substantial evidence that both
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IGFs have a unique and complementary role in regulating
bone growth (68). According to the somatomedin-hypothesis
by Salmon and Daughaday (69) in 1957, GH stimulates so-
matomedin (IGF-I) synthesis in the liver, which in turn ac-
tivates chondrocyte proliferation in the growth plate, thereby
achieving longitudinal growth. It was not until the mid-1980s
that several studies challenged this view, including the find-
ing that local GH injection stimulates tibial bone growth
significantly, whereas the contralateral tibia did not show
this increase (70). The findings by Isaksson et al. (70) were
corroborated by two additional studies in rats, demonstrat-
ing increased tibial bone growth after local GH or IGF-I
injection compared with the contralateral vehicle-injected
tibia (71, 72). Interestingly, it was demonstrated that local
injection of GH regulates the number of chondrocytes ex-
pressing IGF-I in rats (73).

In analogy to the proposed dual-effector theory in adipo-
cytes by Green et al. (74), Isaksson and co-workers used
cultured growth plate chondrocytes to show that GH acts on
resting zone chondrocytes and is responsible for local IGF-I
production, which stimulates clonal expansion of prolifer-
ating chondrocytes in an autocrine/paracrine manner (75).
Partly in agreement with the dual-effector theory but also
contradictory to it, Hunziker et al. (76) showed that in hy-
pophysectomized rats, stem cell cycle times reduced with
either GH or IGF-I administration. In addition, proliferating
cell cycle time and the duration of the hypertrophic phase
were reduced. It was concluded that besides GH, IGF-I was
also capable of stimulating growth plate stem cells, albeit to
a lesser extent (76, 77).

In support of direct effects of GH on the growth plate, GHR
was demonstrated on chondrocytes in rabbit and human
growth plates (78, 79). Only very recently, both GHR and GH
binding protein (GHBP) were also found in rat growth plate
chondrocytes during postnatal development (80). Interest-
ingly, the expression of GHR and GHBP in the growth plate
was regulated by hypophysectomy, GH, T3, T4, and dexa-
methasone, which all affect longitudinal growth (80). An-
other interesting finding was that administration of GH in-
creased the width of the germinal zone in mice deficient for
IGF-I (igf-1 null mice), further substantiating a direct role for
GH on the growth plate (81).

Besides GH, IGF-I plays an important role in longitudinal
bone growth during prenatal and postnatal life because
knockout mice for IGF-I show, among other phenotypes,
severe dwarfism (67, 82), and a child with a homozygous
IGF-I deletion had extremely short stature (Table 1) (55). GH
treatment had no effect on longitudinal growth and body
weight in IGF-I deficiency in both humans and mice (55, 83).
In addition, mice with an inactivated GHR gene, a potential
model for Laron syndrome (Table 1), and a double knockout
mouse for GHR and IGF-I were generated (84, 85). The GHR/
IGF-I double mutants were smaller than either GHR or IGF-I
single mutant, indicating that both GH and IGF-I contribute
significantly to longitudinal growth. Further analysis of
these mice demonstrated that IGF-I is the major determinant
of both embryonic and postnatal growth and that IGF-I ex-
pression is modulated by GH in the postnatal period (83–85).
In support of this, using IGF-I and IGF-II knockout as well
as GH-deficient lit/lit mice, Mohan et al. (86) elegantly

showed that GH/IGF-I but not IGF-II was critical for pu-
berty-induced bone growth. In addition, it was demon-
strated that during prepuberty the effect of IGF-I on bone
accretion was mediated via GH-dependent mechanisms,
whereas during puberty IGF-I exerts both GH-dependent
and independent effects on bone accretion.

2. Contribution of systemic vs. local IGF-I to longitudinal growth.
Recent molecular approaches have been used to further ex-
amine the relative contribution of systemically and locally
produced IGF-I on longitudinal growth. Using the LoxP-Cre
recombination system, liver-specific igf-1 gene-deleted mice
were generated, resulting in mRNA levels for IGF-I less than
1% of the levels in wild-type animals (87). These mice had
greatly reduced serum IGF-levels as expected (25% of nor-
mal), but surprisingly they demonstrated similar growth
rates compared with wild-type mice, despite elevated GH
levels (88, 89). Based on these findings, the “Somatomedin
hypothesis 2000” was proposed in which the liver was ex-
cluded from the somatotrophic axis (68). Still, challenges can
be made against this model, because 25% of normal serum
IGF-I, unaltered free IGF-I, and elevated GH serum levels
may be sufficient to maintain normal growth (90). In addi-
tion, the liver-specific knockout of IGF-I may have been
incomplete during the earliest time period when growth
rates were still high (4 wk of age), whereas body growth had
almost come to an end by the time the knockout was com-
plete (89). In a recent study, double gene disrupted mice for
liver IGF-I and the acid-labile subunit were generated, re-
sulting in even lower serum IGF-I levels (91). These mice
revealed reduced linear growth and decreased bone mineral
density, suggesting that a threshold concentration of IGF-I is
necessary for normal bone growth and bone density (91).

3. Localization of the IGF system in the growth plate. It remains
unclear to what extent local IGF-I contributes to longitudinal
growth. A few reports have demonstrated IGF-II, but not
IGF-I in growth plate chondrocytes (92, 93). Interestingly,
igf-1 null mice show a 30% decrease in linear dimension of
the terminal hypertrophic chondrocytes, suggesting a role
for IGF-I in the regulation of chondrocyte hypertrophy but
not in proliferation (81). From these findings, Le Roith et al.
(68) proposed a working mechanism in which IGF-II, con-
trolled by GH, was involved in the regulation of chondrocyte
proliferation, whereas IGF-I was responsible for chondrocyte
differentiation. However, there is still debate about IGF-I
localization in the growth plate. IGF-I and -II mRNA have
been demonstrated in hypertrophic chondrocytes in mice
postnatally (94), but in growth plates of fetal cows both
mRNAs were detected in proliferating chondrocytes 5- to
32-fold higher than in hypertrophic chondrocytes (95). In
another report, IGF-I mRNA has been demonstrated in pro-
liferating chondrocytes of mouse growth plates (85). Finally,
in rats, IGF-I was detected in all zones of the growth plate,
with the highest expression levels in the proliferating and the
prehypertrophic chondrocytes (73, 96). Adding to the com-
plexity of IGF action in the growth plate, the expression of
IGF-IR and -IIR as well as IGF binding proteins (IGFBP)-1 to
-6 have also been studied in chondrocytes. In fetal cows,
transcripts were detected for IGF-IR and IGFBP-2 to -5, with
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reduced expression of IGFBP-3 to -5 in hypertrophic chon-
drocytes (95). Furthermore, IGF-II, both IGF receptors, and
IGFBP-5 and -6 are coexpressed during early murine chon-
drogenesis, suggesting functional interactions between them
(93). Moreover, IGFBP-3 and -5 have been demonstrated in
rabbit costal chondrocytes (97). In another study, IGFBP-2
and -5 were present in developing chicken limbs, of which
IGFBP-2 was proposed to be an inducer of chondrocyte mat-
uration in vitro (98).

These findings in combination with the data from the
knockout studies necessitate further research to delineate the
exact working mechanism of the somatotrophic axis in the
regulation of longitudinal growth.

B. Thyroid hormone

Besides GH, T3 and, to a lesser extent, its precursor T4 are
crucial for normal bone maturation (36, 99). Both congenital
hypothyroidism and T3 deficiency are associated with severe
growth retardation in rodents and humans (Table 1) (100–
103). Hyperthyroidism causes an increased growth velocity
in children but also leads to premature growth plate fusion
and short stature (104, 105). These findings were recently
underscored in thyroid hormone receptor (TR)� mutant mice
harboring a targeted resistance to thyroid hormone (106). In
agreement with these observations, double knockout mice
for both TRs (TR�1 and �) display retarded growth and bone
maturation (107). However, the single knockouts for TR�1 or
� do not show this phenotype, indicating rescue effects in the
single knockout mice, in which loss of one receptor can be
compensated by the other (108, 109). Despite affected lon-
gitudinal growth, the phenotype of the double knockout is
much milder compared with that in mice with severe hy-
pothyroidism. This might be explained by the ability of TRs
to bind thyroid hormone response elements and modulate
gene transcription, even in the absence of ligand (107).

Besides indirect effects of thyroid hormones on longitu-
dinal growth, for example by influencing GH secretion (100,
107), actions of T3 are at least partially direct, because TR�1
and � proteins have both been demonstrated in stem cells
and early proliferating chondrocytes of rat and human
growth plates (110, 111). T3 seems to stimulate the recruit-
ment of cells to the proliferating zone from the germinal zone
and facilitate the differentiation of growth plate chondro-
cytes, in chicken chondrocytes, and in rat mandibular con-
dyle and femur organ cultures (112–114). Its precursor, T4,
has been shown to increase the number of [3H]methylthy-
midine-labeled chondrocyte nuclei and [35S] incorporation in
Snell dwarf mice growth plates, suggesting a stimulatory role
on both chondrocyte proliferation and differentiation (115).
Recent data have confirmed that T4 induces the expression
of both type II and X collagen, the activity of the differen-
tiation marker alkaline phosphatase, and chondrocyte hy-
pertrophy (116). Furthermore, T4 but not GH is capable of
completely reverting reduced widths of the proliferating and
hypertrophic zone, as well as a disturbed growth plate ar-
chitecture and vascular invasion of the growth plate in hy-
pothyroid rats (117), further establishing a unique role for
thyroid hormones in the regulation of bone growth and
maturation.

Besides influencing GH secretion, thyroid hormones have
been shown to interact with the GH-IGF-I pathway at the
level of the growth plate. In the 1980s, T3 was shown to
promote proliferation of embryonic chicken chondrocytes by
enhancing IGF-I mRNA expression. Also in cultured rat
epiphyseal chondrocytes, T3 stimulated IGF-I mRNA expres-
sion (112, 118). In addition, we have recently shown that
T3/T4 can regulate GHR expression, in vivo in rat growth
plates (80). In summary, thyroid hormones act through chon-
drocytes bearing TRs to modulate growth plate proliferation,
differentiation, and vascular invasion. Part of these effects
appear to be mediated by modulating local GH and/or IGF-I
actions.

C. Glucocorticoids

Various clinical conditions, such as juvenile rheumatoid
arthritis, chronic asthma, and post renal transplantation, re-
quire prolonged GC therapy, leading among other phenom-
ena to decreased bone volume and growth retardation (119).
In contrast, familial GC deficiency is associated with tall
stature (Table 1) (120).

Dexamethasone treatment inhibited chondrocyte prolifer-
ation and matrix synthesis, suggesting that GC is a potent
negative regulator of chondrogenesis (121). Early evidence
for a direct effect of GC in the growth plate came from a study
in which local dexamethasone infusion considerably reduced
tibial growth compared with the contralateral vehicle-
injected leg (51).

A few studies have now localized the GC receptor (GR) in
rat bone cells, including chondrocytes (122), and in human
growth plates, especially in hypertrophic chondrocytes, sug-
gesting direct effects of GC on the growth plate (123).

Recently, GR was demonstrated in the proliferating and
hypertrophic zone of rat growth plates, and treatment with
high doses of corticosterone in rats caused a reduced growth
plate width in long bones, concomitant with growth retar-
dation (124). These findings are most likely explained by
reduced chondrocyte proliferation, already demonstrated by
Annefeld (121) but recently also in prepubertal mice (125), in
combination with increased apoptosis in terminal hypertro-
phic chondrocytes (126, 127).

GC have been shown to suppress growth by modifying the
GH-IGF-I pathway at different levels. Besides inhibiting the
release of GH from the pituitary, GC reduce IGF-I, GHR, and
IGF-IR mRNA in growth plates but also inhibit basal and
IGF-I induced DNA synthesis (125, 128–130). In addition,
dexamethasone induced an increase in the number of IGF-IR
expressing chondrocytes in mice growth plates (131). In rab-
bit costal chondrocytes, dexamethasone suppressed IGFBP-5
expression, a mediator of mitogenic activity of IGF-I, but
up-regulated IGFBP-3, a growth inhibitor, at the same time,
suggesting that differential regulation of IGFBPs could ac-
count in part for dexamethasone-induced growth arrest (97).
Only very recently was it shown in rats that dexamethasone
down-regulates GHR and GHBP expression in the tibial
growth plate (80). GC are also capable of modulating (local)
thyroid hormone levels. It has been shown that GC regulate
deiodinase activity in rat kidney and liver (132, 133), and
based on the expression of deiodinase in the growth plate

van der Eerden et al. • Systemic and Local Regulation of the Growth Plate Endocrine Reviews, December 2003, 24(6):782–801 787



(134), GC may contribute to the control of T3 levels within the
growth plate. Apparently, GC cause growth retardation, not
only through direct effects via the GR but also by interference
with other growth-modulating pathways.

D. Estrogens

It has long been established that sex steroids are important
for longitudinal growth, especially during puberty. It was
generally assumed that in girls, estrogen was the primary sex
steroid regulating pubertal growth, whereas in boys this was
achieved primarily by androgen. The finding of a unique
male patient with an inactivating mutation in the classical
estrogen receptor (ER�) fundamentally changed this view
(135). This patient, who was resistant to the actions of es-
trogens, demonstrated longitudinal growth into adulthood
resulting in tall stature due to absence of growth plate fusion
as well as severe osteoporosis, despite high levels of testos-
terone (T) (Table 1) (135). In support of these findings, a
similar phenotype was found in two male patients with an
aromatase p450 deficiency (Table 1) (136, 137). Aromatase,
encoded by the CYP19 gene, catalyzes the conversion of
androgens into estrogens. Moreover, although data are lim-
ited, the pubertal growth spurt seemed to be absent in all
three patients (135–137). For the estrogen-resistant patient,
no suitable treatment was available, but administration of
conjugated estrogen (Premarin) to the patients with aro-
matase deficiency led to growth plate fusion and enhanced
accrual of bone mass within 6 months (138). These findings
have led to the assumption that in both boys and girls, es-
trogen is the main determinant for the puberty-associated
phenomena related to longitudinal growth and bone quality
(139, 140).

1. In vivo studies. Whereas in humans an obvious growth
spurt occurs during puberty and growth plate fusion at the
end of it, rodents do not clearly demonstrate these phenom-
ena during sexual maturation. Still, after sexual maturation
in rats and mice, longitudinal growth diminishes resulting in
growth rates approaching zero. In humans, the growth spurt
is probably caused by low estrogen levels (in combination
with elevated GH secretion), whereas growth plate fusion is
mediated by the exclusive action of higher levels of estrogen,
demonstrating that estrogen (above a certain concentration)
is an inhibitor of longitudinal growth. This became evident
from findings in patients with a mutation in the ER� and
aromatase genes (135–137).

Rats tend to respond in a similar fashion to estrogen:
removal of estrogen by ovariectomy (OVX) stimulates lon-
gitudinal growth, whereas estrogen treatment inhibits this,
although rats do not close their growth plate until late in life
(141–143). In support of this role for estrogen, ovariecto-
mized immature rabbits treated with either estrogen or the
selective ER modulator raloxifene showed reduced chon-
drocyte proliferation and growth plate height and acceler-
ated growth plate senescence (144). This study also showed
that raloxifene acts as an estrogen antagonist on the growth
plate in rabbits. In contrast, OVX in mice causes no change
in nose-to-tail length compared with their sham-operated
controls (145). Still, in both rats and mice a decrease in bone

density, cancellous bone area, and bone strength is observed,
whereas increases are observed in bone turnover and radial
bone growth (141, 145). Interestingly, several studies in hy-
pophysectomized rats have shown that estrogen can inhibit
longitudinal growth in the absence of GH (142, 146, 147). This
suggests that in rats estrogen can inhibit growth indepen-
dently of GH, possibly by directly influencing the activity of
growth plate chondrocytes. In agreement with these data,
patients with Laron syndrome demonstrate a pubertal
growth spurt and epiphyseal fusion, despite having a defect
in the GHR (148).

A number of studies have now demonstrated both ER�
and ER� in growth plate chondrocytes during development
and in several species, indicating that estrogens can have
direct effects on chondrocytes (149–157). Slight species dif-
ferences in ER�/� distribution in the growth plate might
explain the observed discrepancies in growth responses and
growth plate fusion to estrogen.

The actual longitudinal growth of an individual is
achieved through activity of chondrocyte proliferation and
differentiation within the growth plate. Indeed, after OVX in
rats, bone length and growth plate thickness increased (143,
158), which was associated with an increased immunostain-
ing for proliferating cell nuclear antigen, a marker for di-
viding cells (143). The opposite occurred in orchidectomized
mice and rats (143, 159, 160). There is conflicting evidence on
the role of estrogen during chondrocyte differentiation. In
one study, it was reported that estrogen decreased matrix
synthesis, contributing to the age-related decline in longitu-
dinal growth (161). On the other hand, chondrocyte differ-
entiation was shown to be increased by estrogen, as deter-
mined by [35S] uptake in rabbit and human cultured
chondrocytes (162, 163). In summary, besides indirect effects,
estrogen exerts direct effects on growth plate morphology
and physiology through ER� and ER�, but their exact role in
chondrocyte proliferation and (terminal) differentiation ne-
cessitates further clarification.

2. Knockout models. In the last decade, a number of animal
models have been developed to study the regulation of lon-
gitudinal growth by sex steroids, including the ovariecto-
mized rat, knockout mice for ER� (ERKO), ER� (BERKO),
and both ERs (DERKO), and the aromatase knockout mouse
(141, 164–166). However, in ovariectomized as well as female
estrogen-resistant ERKO mice, longitudinal growth is either
unaffected or inhibited, which is contrary to the patient with
the ER mutation (145, 167). Similar to the ERKO mouse, the
male aromatase knockout mouse is also stunted in its lon-
gitudinal growth, which does not fit with the increased lon-
gitudinal growth in patients with aromatase deficiency (136,
137, 168). Vidal et al. (165) have extensively studied skeletal
growth and maturation in male ERKO, BERKO, and DERKO
mice. In this study, all parameters studied in the various ER
knockouts, i.e., longitudinal growth, growth plate width, ra-
dial skeletal growth, serum levels of osteocalcin and IGF-I
were decreased in the ERKO and DERKO mice but were
unaltered in the BERKO mice (165). In two other studies (169,
170), however, female BERKO mice demonstrated increased
femur lengths compared with wild type, which correlated
with increased serum IGF-I levels. Apparently, ER� is in-
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volved in abrogating the effects on longitudinal growth me-
diated by ER�. Furthermore, species differences may account
for discrepancies between findings in the human and rat and
those in mice.

E. Androgens

Despite the established role for estrogen as the primary
modulator of pubertal growth, androgens also play a specific
role. A few studies have assessed the effect of the adminis-
tration of nonaromatizable androgens [dihydrotestosterone
(DHT), a metabolite of T and the synthetic androgens flu-
oxymesterone and oxandrolone] on longitudinal growth in
boys with constitutionally delayed growth. Longitudinal
growth and ulnar length significantly increased without ad-
vancement of bone age, suggesting that androgen specifi-
cally stimulated longitudinal growth (171, 174). Moreover,
DHT has been shown to increase longitudinal bone growth
in 3-month-old rats (173) and increased [35S] incorporation in
cartilage of growing rabbits during sexual maturation (162).
T has also been described to increase body weight gain, body
length, and growth plate width in mice, rats, and humans but
it remains difficult to distinguish between the androgenic
and estrogenic (after conversion) effect of T on these param-
eters (145, 174). However, local injection of supraphysiologi-
cal amounts of T increased growth plate width compared
with the vehicle-injected contralateral leg (175). These find-
ings were corroborated in the mandibular condyle in vitro
and in hypophysectomized and castrated rats, in which ad-
ministration of T caused increased IGF and IGF-IR expres-
sion but also tibial growth plate width (176, 177). Thus,
androgen appears to have stimulatory effects on longitudinal
growth, independently of estrogen action and by influencing
local mechanisms in chondrocytes.

Using a cre-lox conditional knockout strategy, Yeh et al.
(178) reported the generation of androgen-receptor (AR)
knockout (ARKO) mice. Besides other androgen-dependent
phenotypes, the osteopenic phenotype of male ARKO mice
strongly supports an important role of AR signaling in bone
metabolism. By generating a bone-specific ARKO mouse,
valuable information can be gathered about the precise role
of androgens in bone.

Androgens are thought to play a pivotal role in the mas-

culinization of the skeleton and may do so by influencing the
somatotrophic axis (58, 179). However, direct effects on car-
tilage are likely, because a high-affinity AR has been detected
in rat costochondral chondrocytes (180). Furthermore, AR
has been localized in hypertrophic chondrocytes of the hu-
man costochondral junction and in growth plates from hu-
man tibiae derived from surgery for corrective osteotomy
(181, 182). AR mRNA and protein were recently demon-
strated in the tibial growth plate of the rat (183). The differ-
ences in subcellular AR expression between males and fe-
males around sexual maturation suggests a role for T in
establishing sex differences in longitudinal growth during
sexual maturation (183). Taken together, these studies sug-
gest that, besides estrogens, androgens also can directly in-
fluence processes in the growth plate and that they may
account for some skeletal differences between males and
females.

F. Intracrinology

Originally, it was thought that peripheral organs obtained
their sulfated and nonsulfated sex steroids from the circu-
lation. Both androgens and estrogens are derived from cho-
lesterol by a series of enzymatic steps taking place in the
gonads and to a lesser extent in the adrenals (Fig. 2) (184, 185).
Among the steroidogenic enzymes are steroid sulfatase,
which catalyzes the formation of dihydroepiandrosterone
(DHEA) and estrone (E1) from the sulfated precursors,
DHEA sulfate and E1-S, and sulfotransferase, which cata-
lyzes the opposite direction. DHEA is converted into andro-
stenedione (A) by 3�-hydroxysteroid dehydrogenase (HSD).
Furthermore, type I 17�-HSD converts A into T and E1 into
17�-estradiol (E2), whereas type II catalyzes the conversion
in the opposite direction. Aromatase mediates the conversion
of the androgens A and T into the estrogens, E1 and E2.
Finally, type I 5�-reductase irreversibly converts T into DHT
(Fig. 2).

In the 1980s, the question arose as to what the source is of
sex steroids in the peripheral organs, such as breast and fat
tissue. It appeared that besides deriving nonsulfated sex
steroids from the circulation, these organs were capable of
locally synthesizing sex steroids from sulfated precursors,
which are present in high amounts in the circulation. As a

FIG. 2. Enzymes involved in the synthesis of sex steroids.
See text for details.
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consequence, the term intracrinology was introduced, stat-
ing that in some tissues sex steroids can be synthesized and
act in the same cell without being released in the extracellular
space or in the general circulation (184, 186, 187).

There is some evidence that steroidogenic enzymes are
also present in bone cells. In primary cultures of rat osteo-
blasts, rat and human osteoblastic cell lines, and spongiosa
obtained from patients undergoing orthopedic surgery,
mRNA expression and bioactivity of the enzymes aromatase,
type I and II 17�-HSD, steroid sulfatase, and type I 5�-
reductase have been demonstrated (188–193). Moreover, us-
ing in situ hybridization and immunohistochemistry, Sasano
et al. (194) have localized aromatase mRNA and protein and
type I 17�-HSD immunoreactivity in lining cells and osteo-
blasts in sections of 16 human tibiae. This finding was con-
firmed for aromatase in a study by Oz et al. (195). In the same
study, aromatase immunopositive chondrocytes were de-
tected in the femoral growth plate. In a recent study, aro-
matase, type I 17�-HSD, steroid sulfatase, type II 17�-HSD,
and 5�-reductase mRNA and bioactivity of the former three
enzymes were detected in rat tibial growth plates (196). The
data indicated that sex steroid metabolism occurs in the
growth plate, especially around sexual maturation and there-
after. Perhaps during puberty in humans aromatase is up-
regulated within the growth plate, thereby providing a
mechanism to increase local estrogen levels, which may con-
tribute to growth plate fusion at the end of puberty. Sum-
marizing, these studies indicate that intracrinology may oc-
cur in the growth plate, thereby providing an additional
mechanism to modulate local estrogen levels within the
growth plate.

IV. Local Regulation

New insights into local regulation of chondrocyte activity
in the growth plate mostly come from studies in transgenic
mice revealing crucial roles of various growth factors in
growth regulation in the embryonic growth plate (reviewed
in Ref. 38). Besides IGF-I, the most important locally acting
growth factors influencing longitudinal growth that have
been identified are Indian hedgehog (Ihh), PTHrP, FGFs,
bone morphogenetic proteins (BMPs), and vascular endo-
thelial growth factor (VEGF). Many other factors such as
vitamin D metabolites (197–199), retinoids (200), leptin (201–
205), chondromodulin (206), C-type natriuretic protein (207),
prostaglandins (198), hepatocyte growth factor (208), and
Wnt proteins (209) contribute to local processes in the growth
plate but are not discussed here. It has become increasingly
clear that the same factors are also operational in growth
plate regulation after birth with slight modifications. As
such, these mechanisms are prime targets for regulation by
hormones involved in longitudinal growth regulation, which
will be discussed in Section V.

A. Indian hedgehog

Ihh belongs to the family of hedgehog proteins, which are
morphogens that play crucial roles in embryonic patterning
and development. Hedgehogs bind to a receptor called
patched (Ptc), thereby releasing smoothened (Smo), a mem-

brane protein with an intrinsic intracellular activity that is
abrogated by Ptc in the absence of hedgehogs. Releasing Smo
results in its conformational change and a downstream signal
to activate its intracellular targets (210–212). Ihh was found
to be expressed in prehypertrophic chondrocytes of chicken
and mouse fetal long bones (213, 214). Ihh has been recog-
nized as a regulator of the pace of chondrocyte differentia-
tion. Misexpression of Ihh in chicken long bones blocked
chondrocyte differentiation (213). In a more recent study
using Ihh-null mutant mice, apart from reduced chondrocyte
differentiation as judged by histology and reduced collagen
X expression, two additional roles for Ihh in endochondral
ossification were revealed (215). The knockout mice showed
dwarfism and exhibited markedly reduced chondrocyte pro-
liferation but also failure of osteoblast development (215).
Although Ihh regulated the pace of chondrocyte differenti-
ation through the activity of PTHrP signaling (see Section
IV.B), PTHrP was not able to rescue the effect on chondrocyte
proliferation in mice with an Ihh null mutation. This indi-
cated that Ihh regulation of chondrocyte proliferation occurs
independently of PTHrP signaling (216). These data identify
Ihh as a coordinator of endochondral ossification, regulating
chondrocyte proliferation and differentiation and osteoblast
differentiation, and coupling chondrogenesis to osteogenesis
(Fig. 3) (215, 216).

B. PTH-related peptide

PTHrP was first associated with the pathogenesis of hu-
moral hypercalcemia of malignancy (217). PTHrP and PTH
share a common receptor, the type I PTH/PTHrP receptor
(218). The crucial role of PTHrP and the PTH/PTHrP recep-
tor in embryonic bone formation and longitudinal growth
was recognized by a number of studies. Knockout mice for
PTHrP showed accelerated chondrocyte differentiation lead-
ing to dwarfism (219), whereas ectopic expression of PTHrP
in the growth plate caused inhibition of chondrocyte differ-
entiation leading to a smaller cartilaginous skeleton com-
pared with wild-type mice (220). The PTH/PTHrP receptor
knockout mice demonstrated a similar, although more se-
vere, phenotype compared with the PTHrP knockouts (221).
Two human conditions, in which the function of the PTH/
PTHrP receptor is disturbed, underscored the mouse studies
(Table 1). Jansen-type metaphyseal chondrodysplasia was
first described by Jansen in 1934 (222) and is characterized by
abrogated chondrocyte differentiation resulting in severe
dwarfism due to a constitutively activated PTH/PTHrP re-
ceptor (223). Conversely, homozygous inactivation of this
receptor causes Blomstrand lethal osteochondrodysplasia
(BOCD), which is also associated with dwarfism (224–226).
BOCD presents as a severe form (type I) and a milder form
(type II) and is characterized by accelerated endochondral
ossification, the mirror image of the Jansen-type metaphyseal
chondrodysplasia. Moreover, the phenotype of BOCD cor-
responds with the findings in the PTHrP and PTH/PTHrP
knockout mice (219, 221).

PTHrP is expressed abundantly in the embryonic periar-
ticular perichondrium in mouse, rat, and chicken (213, 227,
228). Its receptor at that stage is detected in late proliferating
and early hypertrophic chondrocytes (213, 229). As men-
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tioned before, Ihh misexpression causes inhibition of chon-
drocyte differentiation but also induces PTHrP expression in
the perichondrium, suggesting that Ihh is an upstream pos-
itive regulator of PTHrP (216). Indeed, in Ihh knockout mice,
PTHrP expression in cartilage is virtually absent (215). Based
on these findings, Vortkamp et al. and Lanske et al. (213, 221)
proposed a model for a locally acting growth-restraining
feedback loop, which controls the level of PTHrP in the
growth plate. In this model, Ihh is expressed by chondrocytes
making the transition from a proliferating into a hypertro-
phic phenotype. Ihh activates adjacent chondrocytes and
diffuses toward the lateral perichondrium, where it can bind
to its receptor Ptc. Via an as yet unknown mechanism, PTHrP
production is stimulated in the periarticular perichondrium.
Then, PTHrP diffuses toward the prehypertrophic zone,
which expresses high levels of PTH/PTHrP receptors and
inhibits differentiation of proliferating chondrocytes to cells
capable of synthesizing Ihh (Fig. 3). Because Ihh and PTHrP
are not expressed in close proximity to each other and the

ECM surrounding chondrocytes allows only limited diffu-
sion of growth factors, intermediates may play a role be-
tween Ihh and PTHrP signaling and vice versa.

C. Fibroblast growth factors

The family of FGFs constitutes at least 22 members that
interact with at least four receptors (FGFR) and are major
regulators of embryonic bone development (230, 231). Both
FGF1 and -2 as well as FGFR1, -2, and -3 are expressed in
chondrocytes (232–235). In humans, activating mutations in
the FGFR3 cause achondroplasia (Table 1), the most common
type of human dwarfism (97% of mutations have a Gly to Arg
mutation in codon 380) (236–238). Other forms of chondro-
dysplasia due to mutations in the FGFR3 gene include hy-
pochondroplasia, a milder form of dwarfism and two severe
types, SADDAN (severe achondroplasia with developmen-
tal delay and acanthosis nigricans), and thanatophoric dys-
plasia (Table 1) (239, 240). Conversely, mice with an inacti-
vating mutation in the FGFR3 gene demonstrate increased
longitudinal growth (241, 242). In addition, overexpression
of FGF2 slows longitudinal growth (243). Only very recently,
mice lacking FGF18 have been generated. These mice dem-
onstrated a phenotype similar to that observed in mice lack-
ing FGFR3, including expanded proliferating and hypertro-
phic zones, increased proliferation, differentiation, and Ihh
signaling (244). In addition, FGF18 deficiency leads to de-
layed ossification and decreased expression of osteogenic
markers, not seen in the FGFR3 knockout phenotype, which
prompted the authors to suggest that FGF18 coordinates
chondrogenesis and osteogenesis through FGFR3 and -2,
respectively (244). In addition, FGF18 appeared to act as a
physiological ligand for FGFR3 in the growth plate. These
studies indicate that FGFR signaling reduces growth by in-
hibiting proliferation and differentiation (Fig. 3).

Mancilla et al. (245) studied the effects of FGF2 on chon-
drocyte differentiation in a metatarsal organ culture system
and found three growth-inhibiting mechanisms for FGF2:
decreased growth plate chondrocyte proliferation, decreased
cellular hypertrophy, and at high concentrations, decreased
synthesis of cartilage matrix. Recently, a mouse model for
thanatophoric dysplasia characterized by severe dwarfism
was used to study the relationship between FGF signaling
and the Ihh/PTHrP feedback loop (246). In these newborn
mice with an activated FGFR3, Ihh and PTHrP mRNA ex-
pression were both down-regulated. In the same study, em-
bryonic metatarsals from wild-type mice were cultured in the
presence of FGF2, and similar results were found. Interest-
ingly, FGF inhibited chondrocyte proliferation by down-
regulating Ihh expression. Moreover, FGF and PTHrP signals
independently inhibited chondrocyte differentiation. It was
concluded that FGFR3 and PTHrP/Ihh signals act through
two integrated parallel pathways that mediate both over-
lapping and distinct functions during longitudinal bone
growth (246). In a recent study by Minina et al. (8), using a
limb culture system, it was found that FGF and BMP sig-
naling are antagonistic in the regulation of chondrocyte pro-
liferation and in Ihh expression and the process of hyper-
trophic differentiation. The balance between the two adjusts

FIG. 3. Interaction of Ihh, PTHrP, BMP, and FGF signaling in mod-
ulating chondrocyte proliferation and differentiation during prenatal
endochondral bone formation. Ihh is expressed by chondrocytes mak-
ing the transition from a proliferating into a hypertrophic phenotype.
Expression of Ihh at this stage is up-regulated by BMPs but inhibited
by FGFs. Ihh activates adjacent chondrocytes and diffuses toward the
lateral perichondrium, where it can bind to its receptor Ptc. Via an as
yet unknown mechanism, PTHrP production is stimulated in the
periarticular perichondrium. Then, PTHrP diffuses toward the pre-
hypertrophic zone, which expresses high levels of PTH/PTHrP recep-
tors and inhibits the differentiation of proliferating chondrocytes to
cells capable of synthesizing Ihh. Besides modulating chondrocyte
differentiation, Ihh also stimulates chondrocyte proliferation, both
directly and indirectly (through BMP signaling). FGFs are able to
inhibit chondrocyte proliferation independently of the two stimula-
tory pathways. BMP signaling inhibits terminal differentiation of
chondrocytes, a process that FGFs can promote. The balance between
BMP and FGF signaling seems to be crucial in regulating prolifera-
tion, Ihh expression, and terminal differentiation of chondrocytes.
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the pace of the differentiation process to the proliferation rate
(Fig. 3) (8).

D. Bone morphogenetic proteins/transforming growth
factor �

The family of BMPs is comprised of at least 15 members,
which are all part of the TGF� superfamily. BMPs were
originally identified as stimulators of bone formation but are
now recognized as important regulators of growth, differ-
entiation, and morphogenesis during embryology (247).
Within the developing limb cartilage elements, BMP2, -4, and
-7 have been detected in the perichondrium, whereas BMP6
was found in prehypertrophic and hypertrophic chondro-
cytes (248–253). In addition, BMP7 was detected in chick
sternal prehypertrophic and mice metatarsal proliferating
chondrocytes (252, 253).

The effects of BMPs are mediated by two type I receptors,
BMPRIA and -IB, which heterodimerize with the type II
receptor, BMPRII. The type I receptors are differentially lo-
calized in embryonic limbs; BMPRIB is detected in early
mesenchymal condensations and is involved in early carti-
lage formation, whereas BMPRIA expression is confined to
prehypertrophic chondrocytes (254). Constitutive active
and/or dominant negative forms of BMPRIA and -IB re-
vealed that the type IA receptor controls the pace of chon-
drocyte differentiation, whereas the type IB receptor is in-
volved in cartilage formation and cell death (apoptosis) (254).

Because various BMPs are expressed in chondrocytes, car-
tilage defects may be anticipated in BMP-related disorders in
mice (255). Mice bred with homozygous null mutations in
BMP2 and -4 are not compatible with life (256, 257), whereas
other family members such as growth and differentiation
factor 5 (GDF5) and BMP5 are important mediators of chon-
drocyte differentiation in mesenchymal condensations at
various sites (258–261). In addition, mice carrying a targeted
disruption of BMPRIB show defects in proliferation of pre-
chondrogenic cells and chondrocyte differentiation in the
phalangeal region (262). Additional BMPRIB/GDF5 and
BMPRIB/BMP7 double knockout studies revealed that
GDF5 is a ligand for BMPRIB and that in the absence of
BMPRIB, BMP7 plays an essential role in appendicular skel-
etal development (262). In humans, only a few mutations in
members of the TGF� superfamily cause cartilage disorders.
Genomic mutations in the human GDF5 gene have been
shown to cause chondrodysplasia Grebe type, acrome-
somelic chondrodysplasia Hunter Thompson type, and
brachydactyly type C, all of which are mainly characterized
by defects of the limbs, with increasing severity toward the
distal regions (263–265). Several mutations in the BMP an-
tagonist noggin result in proximal symphalangism and mul-
tiple synostoses syndrome (266).

Recently, BMP6 was introduced as a possible mediator in
the growth-restraining feedback loop involving Ihh and
PTHrP (252). The fact that BMPRIA is expressed in the same
region and that it has been shown to be critical for chon-
drocyte hypertrophy further strengthens an autocrine/para-
crine role for BMP6 in prehypertrophic chondrocytes (254,
267). Still, the BMP6 knockout mouse hardly has any phe-
notype, leaving little evidence for an important physiological

role for BMP6 in chondrocyte differentiation (268). This was
underscored by Minina et al. (269), who elegantly showed
that BMPs do not act as a secondary signal of Ihh to induce
PTHrP expression or to delay the onset of hypertrophic dif-
ferentiation (Fig. 3). Despite this, they showed that normal
chondrocyte proliferation requires parallel signaling of both
Ihh and BMPs and that BMPs are capable of inhibiting chon-
drocyte differentiation independently of the Ihh/PTHrP
pathway (269).

In another study, inhibition of chondrocyte differentiation
by TGF� was shown to be at least partly mediated by in-
duction of PTHrP expression (270). In a second study by the
same group, it was established that Shh, a functional sub-
stitute for Ihh, stimulates expression of TGF�2 and -3 in
mouse metatarsals and that TGF�2 signaling is required for
inhibition of differentiation and regulation of PTHrP expres-
sion by Shh (271). They concluded that TGF�2 acts as a signal
relay between Ihh and PTHrP in the regulation of chondro-
cyte differentiation (274). These data imply that the BMPs/
TGF� and their receptors act as a signaling system, both
dependently and independently of the Ihh/PTHrP feedback
loop, at different levels during embryonic bone formation
(Fig. 3).

E. Vascular endothelial growth factor

VEGF is a chemoattractant for endothelial cells and is one
of the most important growth factors for endothelial cells
(272). During chondrocyte hypertrophy, ECM surrounding
the hypertrophic cells becomes calcified, which triggers the
invasion of blood vessels from the underlying metaphyseal
bone. This is preceded by the expression of VEGF in hyper-
trophic chondrocytes (31, 273). Inactivation of VEGF by sys-
temic administration of a soluble receptor to 24-d-old mice
suppressed blood vessel invasion and trabecular bone for-
mation concomitant with an increased width of the hyper-
trophic zone (31). Moreover, recruitment of chondroclasts
expressing MMP-9 and resorption of terminally differenti-
ated chondrocytes were inhibited (31). In this context,
MMP-9 knockout mice show a wider hypertrophic zone
along with delayed chondrocyte apoptosis, vascularization,
and ossification (21). These data indicate that VEGF and
MMP-9 are key players in the events that take place during
the endstage of endochondral bone formation such as ter-
minal differentiation of chondrocytes, vascular invasion,
chondrocyte apoptosis, and their subsequent replacement by
bone (21, 31, 274). Other promotors or inhibitors of angio-
genesis have been described in the literature, including trans-
ferrin (promotor) (275), chondromodulin (inhibitor) (276),
and FGFs (promotor) (277).

In embryonic growth plates, Schipani et al. (13) described
the role of hypoxia inducible factor (HIF)-1�, which is a
transcription factor that regulates VEGF expression (13, 278).
Growth plate-specific targeted deletion of HIF-1� caused
increased cell death and reduced VEGF expression (13). At
the same time, cells surrounding the area of increased cell
death contained enhanced VEGF levels, which was second-
ary to their altered redox status. This suggests that VEGF
expression is regulated in an HIF-1�-dependent and -inde-
pendent manner (13).
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Recently, a member of the runt family of transcription
factors, Cbfa1/Runx2, was demonstrated in hypertrophic
chondrocytes (279). Constitutive expression in proliferating
chondrocytes induced hypertrophic chondrocyte differenti-
ation but also Ihh expression (280). In contrast, in primary
chondrocytes from newborn mice, hedgehog signaling en-
hanced the expression of Cbfa1 (281). Apparently, a regula-
tory loop exists, in which Cbfa1 and Ihh regulate each other,
involving hypertrophic chondrocytes and mesenchymal
cells of the bone collar (282). Furthermore, Cbfa1 was shown
to play a role in the expression of VEGF in growth plate
chondrocytes (283). These data provide a link between Ihh
and VEGF in regulating the pace of hypertrophic and ter-
minal differentiation of growth plate chondrocytes (Fig. 3).

V. Growth Plate Regulation after Birth and
Interactions between Hormonal and

Local Mechanisms

A. Local growth plate regulation after birth

All growth factors mentioned above are expressed in em-
bryonic growth plates, suggesting that they fulfill a crucial
role in longitudinal growth before birth. However, evidence
is gathering that they also play a role after birth. A number
of papers have now localized Ihh, PTHrP, and their receptors
in mammalian growth plates and fracture calluses, suggest-
ing that these factors play a role in local regulation of lon-
gitudinal bone growth and fracture repair after birth as well
(214, 228, 284–289). We were among the first to demonstrate
Ihh, PTHrP, Ptc, and the PTH/PTHrP receptor in female and
male rat growth plates during development (290). Interest-
ingly, all genes studied within the postnatal growth plate
were predominantly expressed in the transition zone and to
a lesser extent in the growth plate stem cells. Because the
distance from the growth plate chondrocytes to the periar-
ticular perichondrium considerably increases during embry-
onic bone development, due to the appearance of a second-
ary ossification center, diffusion of growth factors between
these two areas will be seriously hampered. The localized
expression of all players in the Ihh/PTHrP feedback loop
predominantly in the transition zone of the growth plate
suggests that diffusion over long distances is not required
after birth and that the feedback loop may be in part auto-
crine (293).

Besides Ihh, PTHrP, and their receptors, BMP2, -4, -6, and
-7 are also expressed in proliferating and maturing chon-
drocytes of growth plates after birth (284, 291–293). More-
over, their receptors, BMPRIA, -IB and -II, were found
throughout the growth plate, albeit at a lower level in hy-
pertrophic chondrocytes (293). Also, FGFs and VEGF are
found in the postnatal growth plate (294–296), adding to the
concept that the complete regulatory array of growth factors
found in embryonic bones is present after birth as well and
may play a similar role in the regulation of chondrocyte
proliferation and differentiation.

Functional evidence for effects of growth factors in the
growth plate after birth is still limited. A regulatory role for
Ihh in chondrocyte differentiation comes from findings in a
human condition known as hereditary multiple exostoses,

which becomes manifest after birth and in which mutations
in genes encoding exostosins (EXTs) have been identified
(297–299). Mutations in EXT 1 and 2 led to an absence of the
proteoglycan heparan sulfate, which is an important signal-
ing molecule involved in transport of growth factors in car-
tilage, including Ihh and FGFs (300–302). Absent or under-
sulfated heparan sulfate may therefore result in disturbed
Ihh and FGF transport through the growth plate, leading to
disorganization of growth plate chondrocytes, further estab-
lishing Ihh as a central player in chondrocyte proliferation
and differentiation (27, 302). In this respect, it is worthwhile
mentioning that a recently identified mutation of the PTH/
PTHrP receptor gene in human enchondromatosis signals
abnormally in vitro and causes enchondroma-like lesions in
transgenic mice. The mutant receptor constitutively activates
hedgehog signaling, most likely causing formation of
enchondroma-like lesions (303). In a more recent study, re-
duced growth plate Ihh and PTHrP expression was sug-
gested to contribute to the observed growth delay and dis-
turbed growth plate architecture in irradiated tibiae of young
rats (304).

An important finding for a crucial role of PTHrP in growth
plates after birth comes from a study by Schipani et al. (305).
Targeted expression of a Jansen receptor (a constitutively
active PTH/PTHrP receptor) in the growth plate of PTHrP-
ablated mice rescued these mice from perinatal death and
caused, among other phenomena, a reduction in longitudinal
growth. Surprisingly, premature epiphyseal closure was ob-
served in 3-wk-old mice. Growth plate closure does usually
not occur until late in life. These observations suggest a role
for PTHrP and its receptor in growth plate fusion (305).

B. Interactions between hormonal and local regulation

Increasing evidence is gathering for interactions between
hormonal regulation and local factors at the level of the
growth plate. Receptors for GH, T3/T4, GC, estrogens, and
androgens have all been detected in growth plates from
various species, indicating that most, if not all, hormones can
have direct effects on processes in the growth plate after birth
(80, 110, 111, 122, 154, 155, 181, 183).

Stevens et al. (287) studied PTHrP and PTH/PTHrP re-
ceptor expression in hypothyroid, thyrotoxic, and hypothy-
roid-T4-treated rat growth plates. They found that thyroid
status greatly influenced the expression of both proteins;
hypothyroidism caused, in addition to disorganized growth
plates, enhanced PTHrP expression, whereas in thyrotoxic
rats the PTH/PTHrP receptor was undetectable. These data
indicate that disturbed Ihh/PTHrP feedback loop activity
may be a mechanism that underlies growth disorders in
childhood thyroid disease (287). Only very recently, Kind-
blom et al. (306) examined the expression of Ihh and PTHrP
in growth plates from patients subjected to epiphyseal sur-
gery. It appeared that immunostaining for both Ihh and
PTHrP was present predominantly in early hypertrophic
chondrocytes and that its level of expression was higher
during early stages and lower during later stages of puberty.
These data are suggestive for the assumption that both Ihh
and PTHrP are involved in the regulation of pubertal growth
in humans and combined with the observations in the Jansen
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mice suggesting a role for this system in growth plate closure
(287, 305). Whether the Ihh/PTHrP feedback loop can be
regulated by estrogens in the growth plate is, however, not
clear. Interestingly, ERs are expressed in zones of the growth
plate that also express Ihh and/or PTHrP, suggesting that the
expression of these genes may be regulated by this sex ste-
roid. That this might be the case comes from observations in
the rat uterus, where E2 induces PTHrP expression (307).
Summarizing, it seems likely that systemic hormones in-
volved in the regulation of longitudinal growth exert their
effects on growth plate chondrocytes by influencing the ex-
pression and/or activity of locally acting growth factors,
such as Ihh, PTHrP, BMPs, FGFs, and VEGF.

VI. Conclusions and Perspectives

Over the last decade, much knowledge has been gained
regarding local mechanisms regulating chondrocyte prolif-
eration and differentiation in the embryonic growth plate.
There is increasing evidence that these local regulatory sys-
tems are also functional after birth. The effects of hormones
on longitudinal growth and final height are well known, and
it is now recognized that these hormones exert a large part
of their effects by acting directly on the growth plate. Still, the
molecular mechanisms that underlie these effects are largely
unknown. Intensive research focusing on the interaction of
systemic hormones with locally acting mechanisms such as
the Ihh/PTHrP feedback loop in the coming years will un-
doubtedly provide additional data that will shed light on the
molecular regulation of longitudinal growth at the level of
the epiphyseal plate.
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254. Zou H, Wieser R, Massagué J, Niswander L 1997 Distinct roles of
type I bone morphogenetic protein receptors in the formation and
differentiation of cartilage. Genes Dev 11:2191–2203

255. Chubinskaya S, Kuettner KE 2003 Regulation of osteogenic pro-
teins by chondrocytes. Int J Biochem Cell Biol 35:1323–1340

256. Zhang H, Bradley A 1996 Mice deficient for BMP2 are nonviable
and have defects in amnion/chorion and cardiac development.
Development 122:2977–2986

257. Winnier G, Blessing M, Labosky PA, Hogan BL 1995 Bone mor-
phogenetic protein-4 is required for mesoderm formation and pat-
terning in the mouse. Genes Dev 9:2105–2116

258. King JA, Storm EE, Marker PC, Dileone RJ, Kingsley DM 1996
The role of BMPs and GDFs in development of region-specific
skeletal structures. Ann NY Acad Sci 785:70–79

259. Bailon-Plaza A, Lee AO, Veson EC, Farnum CE, van der Meulen
MC 1999 BMP-5 deficiency alters chondrocytic activity in the
mouse proximal tibial growth plate. Bone 24:211–216

260. Storm EE, Kingsley DM 1999 GDF5 coordinates bone and joint
formation during digit development. Dev Biol 209:11–27

261. Buxton P, Edwards C, Archer CW, Francis-West P 2001 Growth/
differentiation factor-5 (GDF-5) and skeletal development. J Bone
Joint Surg Am 83-A Suppl 1:S23–S30

262. Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM 2000 The type
I BMP receptor BMPRIB is required for chondrogenesis in the
mouse limb. Development 127:621–630

263. Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten
FP 1996 A human chondrodysplasia due to a mutation in a TGF-�
superfamily member. Nat Genet 12:315–317

264. Polinkovsky A, Robin NH, Thomas JT, Irons M, Lynn A, Good-
man FR, Reardon W, Kant SG, Brunner HG, van der Burgt I,
Chitayat D, McGaughran J, Donnai D, Luyten FP, Warman ML
1997 Mutations in CDMP1 cause autosomal dominant brachydac-
tyly type C. Nat Genet 17:18–19

265. Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa
T, Tsipouras P, Luyten FP 1997 Disruption of human limb mor-
phogenesis by a dominant negative mutation in CDMP1. Nat Genet
17:58–64

266. Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-
Hirji R, Hudgins L, Cremers CW, Cremers FP, Brunner HG,
Reinker K, Rimoin DL, Cohn DH, Goodman FR, Reardon W,
Patton M, Francomano CA, Warman ML 1999 Heterozygous mu-
tations in the gene encoding noggin affect human joint morpho-
genesis. Nat Genet 21:302–304

267. Leboy PS, LuValle P, Volk SW 1998 BMP regulation of type X
collagen gene transcription during chondrocyte hypertrophy. Bone
23:S243

268. Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL,
Robertson EJ 1998 Mice lacking Bmp6 function. Dev Genet 22:
321–339

269. Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMa-

hon AP, Vortkamp A 2001 BMP and Ihh/PTHrP signaling interact
to coordinate chondrocyte proliferation and differentiation. Devel-
opment 128:4523–4534

270. Serra R, Karaplis A, Sohn P 1999 Parathyroid hormone-related
peptide (PTHrP)-dependent and -independent effects of transform-
ing growth factor � (TGF-�) on endochondral bone formation. J Cell
Biol 145:783–794

271. Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins DJ, Serra R
2002 TGF�2 mediates the effects of hedgehog on hypertrophic
differentiation and PTHrP expression. Development 129:1913–1924

272. Ferrara N, Davis-Smyth T 1997 The biology of vascular endothelial
growth factor. Endocr Rev 18:4–25

273. Haigh JJ, Gerber HP, Ferrara N, Wagner EF 2000 Conditional
inactivation of VEGF-A in areas of collagen2a1 expression results
in embryonic lethality in the heterozygous state. Development
127:1445–1453

274. Gerber HP, Ferrara N 2000 Angiogenesis and bone growth. Trends
Cardiovasc Med 10:223–228

275. Carlevaro MF, Albini A, Ribatti D, Gentili C, Benelli R, Cermelli
S, Cancedda R, Cancedda FD 1997 Transferrin promotes endo-
thelial cell migration and invasion: implication in cartilage neo-
vascularization. J Cell Biol 136:1375–1384

276. Hiraki Y, Inoue H, Iyama K, Kamizono A, Ochiai M, Shukunami
C, Iijima S, Suzuki F, Kondo J 1997 Identification of chondro-
modulin I as a novel endothelial cell growth inhibitor. Purification
and its localization in the avascular zone of epiphyseal cartilage.
J Biol Chem 272:32419–32426

277. Baron J, Klein KO, Yanovski JA, Novosad JA, Bacher JD, Bolan-
der ME, Cutler Jr GB 1994 Induction of growth plate cartilage
ossification by basic fibroblast growth factor. Endocrinology 135:
2790–2793

278. Semenza GL, Agani F, Iyer N, Kotch L, Laughner E, Leung S, Yu
A 1999 Regulation of cardiovascular development and physiology
by hypoxia-inducible factor 1. Ann NY Acad Sci 874:262–268

279. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G 2001
Continuous expression of Cbfa1 in nonhypertrophic chondrocytes
uncovers its ability to induce hypertrophic chondrocyte differen-
tiation and partially rescues Cbfa1-deficient mice. Genes Dev 15:
467–481

280. Ueta C, Iwamoto M, Kanatani N, Yoshida C, Liu Y, Enomoto-
Iwamoto M, Ohmori T, Enomoto H, Nakata K, Takada K, Kurisu
K, Komori T 2001 Skeletal malformations caused by overexpres-
sion of Cbfa1 or its dominant negative form in chondrocytes. J Cell
Biol 153:87–100

281. Takamoto M, Tsuji K, Yamashita T, Sasaki H, Yano T, Taketani
Y, Komori T, Nifuji A, Noda M 2003 Hedgehog signaling enhances
core-binding factor �1 and receptor activator of nuclear factor-�B
ligand (RANKL) gene expression in chondrocytes. J Endocrinol
177:413–421

282. Karsenty G, Wagner EF 2002 Reaching a genetic and molecular
understanding of skeletal development. Dev Cell 2:389–406

283. Zelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S,
Olsen BR 2001 Tissue specific regulation of VEGF expression dur-
ing bone development requires Cbfa1/Runx2. Mech Dev 106:97–
106

284. Iwasaki M, Le AX, Helms JA 1997 Expression of Indian hedgehog,
bone morphogenetic protein 6 and gli during skeletal morphogen-
esis. Mech Dev 69:197–202

285. Kartsogiannis V, Moseley J, McKelvie B, Chou ST, Hards DK, Ng
KW, Martin TJ, Zhou H 1997 Temporal expression of PTHrP dur-
ing endochondral bone formation in mouse and intramembranous
bone formation in an in vivo rabbit model. Bone 21:385–392

286. Murakami S, Noda M 2000 Expression of Indian hedgehog during
fracture healing in adult rat femora. Calcif Tissue Int 66:272–276

287. Stevens DA, Hasserjian RP, Robson H, Siebler T, Shalet SM,
Williams GR 2000 Thyroid hormones regulate hypertrophic chon-
drocyte differentiation and expression of parathyroid hormone-
related peptide and its receptor during endochondral bone forma-
tion. J Bone Miner Res 15:2431–2442

288. Farquharson C, Jefferies D, Seawright E, Houston B 2001 Regu-
lation of chondrocyte terminal differentiation in the postembryonic
growth plate: the role of the PTHrP-Indian hedgehog axis. Endo-
crinology 142:4131–4140

800 Endocrine Reviews, December 2003, 24(6):782–801 van der Eerden et al. • Systemic and Local Regulation of the Growth Plate



289. Nakase T, Miyaji T, Kuriyama K, Tamai N, Horiki M, Tomita T,
Myoui A, Shimada K, Yoshikawa H 2001 Immunohistochemical
detection of parathyroid hormone-related peptide, Indian hedge-
hog, and patched in the process of endochondral ossification in the
human. Histochem Cell Biol 116:277–284

290. van der Eerden BCJ, Karperien M, Gevers EF, Lowik CW, Wit JM
2000 Expression of Indian hedgehog, parathyroid hormone-related
protein, and their receptors in the postnatal growth plate of the rat:
evidence for a locally acting growth restraining feedback loop after
birth. J Bone Miner Res 15:1045–1055

291. Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Wei-
land A, Doty SB, Glaser D, Rosen VM 1995 Immunolocalization
and expression of bone morphogenetic proteins 2 and 4 in fracture
healing. J Orthop Res 13:357–367

292. Houston B, Thorp BH, Burt DW 1994 Molecular cloning and ex-
pression of bone morphogenetic protein-7 in the chick epiphyseal
growth plate. J Mol Endocrinol 13:289–301

293. Yazaki Y, Matsunaga S, Onishi T, Nagamine T, Origuchi N,
Yamamoto T, Ishidou Y, Imamura T, Sakou T 1998 Immunohis-
tochemical localization of bone morphogenetic proteins and the
receptors in epiphyseal growth plate. Anticancer Res 18:2339–2344

294. Praul CA, Ford BC, Leach RM 2002 Effect of fibroblast growth
factors 1, 2, 4, 5, 6, 7, 8, 9, and 10 on avian chondrocyte proliferation.
J Cell Biochem 84:359–366

295. Kishimoto J, Ehama R, Ge Y, Kobayashi T, Nishiyama T, Detmar
M, Burgeson RE 2000 In vivo detection of human vascular endo-
thelial growth factor promoter activity in transgenic mouse skin.
Am J Pathol 157:103–110

296. Ichigatani M, Saga T, Yamaki K, Yoshizuka M 2001 Appearance
of vascular endothelial growth factor (VEGF) in femoral head in the
growing rat. Histol Histopathol 16:463–468

297. Le Merrer M, Legeai-Mallet L, Jeannin PM, Horsthemke B, Schin-
zel A, Plauchu H, Toutain A, Achard F, Munnich A, Maroteaux
P 1994 A gene for hereditary multiple exostoses maps to chromo-
some 19p. Hum Mol Genet 3:717–722

298. Ludecke HJ, Wagner MJ, Nardmann J, La Pillo B, Parrish JE,
Willems PJ, Haan EA, Frydman M, Hamers GJ, Wells DE 1995
Molecular dissection of a contiguous gene syndrome: localization

of the genes involved in the Langer-Giedion syndrome. Hum Mol
Genet 4:31–36

299. Porter DE, Emerton ME, Villanueva-Lopez F, Simpson AH 2000
Clinical and radiographic analysis of osteochondromas and growth
disturbance in hereditary multiple exostoses. J Pediatr Orthop 20:
246–250

300. McCormick C, Duncan G, Goutsos KT, Tufaro F 2000 The putative
tumor suppressors EXT1 and EXT2 form a stable complex that
accumulates in the Golgi apparatus and catalyzes the synthesis of
heparan sulfate. Proc Natl Acad Sci USA 97:668–673

301. Duncan G, McCormick C, Tufaro F 2001 The link between heparan
sulfate and hereditary bone disease: finding a function for the EXT
family of putative tumor suppressor proteins. J Clin Invest 108:
511–516

302. Hecht JT, Hall CR, Snuggs M, Hayes E, Haynes R, Cole WG 2002
Heparan sulfate abnormalities in exostosis growth plates. Bone
31:199–204

303. Hopyan S, Gokgoz N, Poon R, Gensure RC, Yu C, Cole WG, Bell
RS, Juppner H, Andrulis IL, Wunder JS, Alman BA 2002 A mutant
PTH/PTHrP type I receptor in enchondromatosis. Nat Genet 30:
306–310

304. Bakker B, van der Eerden BC, Koppenaal DW, Karperien M, Wit
JM 2003 Effect of x-irradiation on growth and the expression of
parathyroid hormone-related peptide and Indian hedgehog in the
tibial growth plate of the rat. Horm Res 59:35–41

305. Schipani E, Lanske B, Hunzelman J, Luz A, Kovacs CS, Lee K,
Pirro A, Kronenberg HM, Juppner H 1997 Targeted expression of
constitutively active receptors for parathyroid hormone and para-
thyroid hormone-related peptide delays endochondral bone for-
mation and rescues mice that lack parathyroid hormone-related
peptide. Proc Natl Acad Sci USA 94:13689–13694

306. Kindblom JM, Nilsson O, Ohlsson C, Savendahl L 2002 Expres-
sion and localization of Indian hedgehog (Ihh) and parathyroid
hormone related protein (PTHrP) in the human growth plate dur-
ing pubertal development. J Endocrinol 174:R1–R6

307. Paspaliaris V, Petersen DN, Thiede MA 1995 Steroid regulation of
parathyroid hormone-related protein expression and action in the
rat uterus. J Steroid Biochem Mol Biol 53:259–265

Summer Institute on Aging Research 2004

The National Institute on Aging (NIA) announces the annual Summer Institute on Aging Research, a
weeklong workshop for investigators new to aging research, focused on current issues, research method-
ologies and funding opportunities. The program will also include consultations on the development of
research interests. The 2004 Summer Institute will be held July 10–16 in Queenstown, MD. Support is
available for travel and living expenses. Applications are due March 1, 2004. To increase the diversity of
participants, minority investigators are strongly encouraged to apply. The applicant must be a U.S. citizen,
non-citizen national or permanent resident. For additional information and application form contact:

Office of the Director
Office of Special Populations
National Institutes on Aging
National Institutes of Health
Building 31, Room 5C-35
31 Center Drive MSC-2292
Bethesda, Maryland 20892-2292
Telephone: (301) 496-0765
Fax: (301) 496-2525
E-mail: Taylor�Harden@nih.gov

or

See the “News and Events—What’s New” section of the NIA WEB Page

WEB SITE: http://www.nia.nih.gov
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