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Summary
Once articular cartilage is injured, it has a very limited capacity for self-repair. Although current
surgical therapeutic procedures to cartilage repair are clinically useful, they cannot restore a normal
articular surface. Current research offers a growing number of bioactive reagents, including proteins
and nucleic acids, that may be used to augment different aspects of the repair process. As these agents
are difficult to administer effectively, gene transfer approaches are being developed to provide their
sustained synthesis at sites of repair.

To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium,
or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally
considered more suitable for chondroprotective approaches, based on the expression of anti-
inflammatory mediators. Gene transfer targeted to cartilage defects can be achieved by either direct
vector administration to cells located at or surrounding the defects, or by transplantation of genetically
modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs
encoding growth factors can be delivered locally to sites of cartilage damage, where they are
expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating, that
efficient delivery and expression of these genes is capable of influencing a repair response toward
the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status
of gene therapy for cartilage healing and highlights some of the remaining challenges.
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Introduction
The application of gene transfer to articular tissues was pioneered by Evans and co-workers,
as a means to treat arthritis [46,49]. Initial encouraging experiments in animal models using
retroviral-mediated gene delivery formed the basis for a clinical trial to evaluate the safety and
feasibility of using gene therapy for rheumatoid arthritis [46,49,59-61,148]. The study was
completed without incident; the procedure was well-tolerated by the nine participants, and
intra-articular gene transfer and expression was observed in all joints treated [46,49]. The
relative success of these studies suggests that this technology may have application in treating
a number of articular disorders for which current treatment modalities are unsatisfactory.
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Compared to the treatment of chronic or genetic diseases, where likely a lifelong expression
of a corrective transgene is required, the use of gene transfer techniques to facilitate
musculoskeletal tissue repair offers perhaps an immediate opportunity for a clinical application
of gene therapy, as it may only require transient, localized expression of a specific transgene
product. Whereas good success has been achieved by gene transfer to bone healing [9],
augmenting the repair of focal articular cartilage defects by gene transfer has not been
straightforward. Current research indicates that the design of a successful genetic approach for
cartilage repair includes a refined strategy of gene delivery that meets the complexities of
treating this tissue. This review aims to summarize some of the basic principles of cartilage
injury and regeneration, and comments on the pros and cons of recent gene therapy approaches
to repair, as well as future challenges.

Cartilage injury and limitations of current treatments
Hyaline articular cartilage is a highly specialized tissue that protects the bones of diarthrodial
joints from forces associated with load bearing, friction and impact. Although a remarkably
durable tissue, once articular cartilage is injured, it has very limited capacities for self-repair.
In partial thickness defects, where a lesion is wholly contained within the articular cartilage,
there is no involvement of the vasculature. Consequently, chondroprogenitor cells in blood and
marrow cannot enter the damaged region to influence or contribute to the reparative process.
Resident articular chondrocytes do not migrate to the lesion, and production of a reparative
matrix by these cells does not occur. As such, the defect is not filled or repaired and essentially
remains permanently [21,80]. Full thickness cartilage injuries result in damage to the chondral
layer and subchondral bone plate, causing rupture of blood vessels, and hematoma formation
at the injury site. In this case, a repair response is initiated that results in the formation of a
fibrocartilage repair tissue within weeks [21,80].

In focal cartilage defects, where a stable fibrocartilaginous repair tissue has not formed, and
patients are suffering clinical symptoms such as pain and swelling, surgeons aim to promote
a natural fibrocartilaginous response, by using marrow stimulating techniques, such as abrasion
arthroplasty, Pridie drilling, or microfracture. These procedures are cost effective and clinically
useful, as patients often have reduced pain and improved joint function, and are therefore
generally considered as first-line treatment for focal cartilage defects [22,121,122,161,162].
However, fibrocartilage has inferior mechanical and biochemical characteristics compared to
normal hyaline articular cartilage. It is poorly organized, contains significant amounts of
collagen type I, and is susceptible to injury. The inferior repair matrix breaks down with time
and loading, which ultimately leads to premature OA [21,80]. Therefore, as outlined in other
articles of this issue, the aim of modern therapeutic techniques is to achieve a more hyaline-
like cartilage repair tissue by transplanting tissues or cells. Tissue transplantation procedures
such as periosteum, perichondrium, or osteochondral grafts have shown positive short term
results for a number of patients, but the long term clinical results are uncertain, with tissue
availability for transplant being a major limitation, especially in large cartilage defects [19,
22,23,71,80]. Therefore, the autologous chondrocyte transplantation (ACT) procedure has
been used clinically since 1987 in combination with a periosteal cover to treat chondral or
osteochondral defects of the knee with good clinical results [20,121,144,145]. Modern
modifications of this procedure include embedding chondrocytes in a three dimensional matrix
before transplantation into cartilage defects [15,114,123]. Despite these advances, most
surgical interventions only result in improvement of clinical symptoms, such as pain relief, but
none of the current treatment options has regenerated long-lasting hyaline cartilage repair tissue
yet [22,80,121,144]. Therefore, tissue engineering approaches are being aggressively
investigated in an effort to engineer cartilage in vitro to produce grafts to facilitate regeneration
of articular cartilage in vivo. In most cases, cells are harvested by enzymatic digestion or
outgrowth culture, which are thereafter extensively expanded in culture. The cells are then
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seeded onto various biologically compatible scaffolds, and cultured in the presence of a specific
cytokine or growth factor, or a cocktail of bioactive factors. However, despite promising in
vitro data with several approaches, a significant improvement compared to current cartilage
repair modalities, has yet to be achieved. Many challenges thus remain for successful cell-
based cartilage repair approaches to form hyaline repair tissue in vivo [23,80,92,177].
Impairments of hyaline neo-cartilage formation is likely due to a number of reasons, including
insufficient differentiation, loss of transplanted cells or tissues, matrix destruction and
integration failures, which all can occur due to various reasons.

Candidate gene products
In recent years, several factors have been identified that might be functional in augmenting
different aspects of cartilage tissue repair. Of particular interest are morphogens and
transcription factors that promote differentiation along chondrogenic lineages, growth factors
that promote matrix synthesis, inhibitors of osteogenic or hypertrophic differentiation,
antagonists that inhibit apoptosis, senescence or responses to catabolic cytokines (Table 1).
Several of these substances have shown promise in animal models of cartilage repair and
regeneration, but their clinical application is hindered by delivery problems [103,164,171].
Due to the limited half-lives of many proteins in vivo, they are particularly difficult to
administer to sites of cartilage damage at therapeutic concentrations and for sustained periods
of time. Localized delivery of these agents without involvement of non-target organs has also
proven to be problematic [164,171]. We suggest that these limitations may be overcome by
adapting appropriate gene transfer technologies. In particular, it should be possible to develop
techniques for transferring therapeutic genes encoding the necessary gene products to cells at
the sites of injury or disease, for sustained local expression at high levels with minimal
collateral exposure of non-target tissues [164,171]. In this manner, the proteins of interest are
synthesized locally by cells and are presented to the microenvironment in a natural fashion.
Furthermore, recombinant proteins produced by overexpression in bacteria may have altered
activity, since they may not be similarly modified post-translationally as when synthesized by
a mammalian cell [113].

The list of potentially useful cDNAs for cartilage repair (Table 1) comprises members of the
transforming growth factor (TGF)-β superfamily, including TGF-βs 1, 2, and 3, several of the
bone morphogenetic proteins (BMPs), insulin-like growth factor (IGF)-1, fibroblast growth
factors (FGFs), and epidermal growth factor (EGF), among others (reviewed in [74,103]).
Other secreted proteins, such as indian hedgehog (IHH) or sonic hedgehog (SHH), play key
roles in regulating chondrocyte hypertrophy [185], and may also prove to be beneficial for
modulating the chondrocytic phenotype of grafted cells. Another class of biologics that may
be useful in cartilage repair is transcription factors that promote chondrogenesis or the
maintenance of the chondrocyte phenotype. SOX9 and related transcription factors like L-
SOX5, and SOX6 have been identified as essential for chondrocyte differentiation and cartilage
formation [98]. Signal transduction molecules, such as SMADs, are also known to be important
regulators of chondrogenesis [76]. As these molecules function completely intracellularly, they
cannot be delivered in soluble form, and gene transfer might be the only way to harness these
factors for repair. Alternatively, delivery and expression of cDNAs encoding specific
extracellular matrix (ECM) components such as collagen type II, tenascin, or cartilage
oligomeric matrix protein (COMP), may also be used to support production and maintenance
of the proper hyaline cartilage matrix [37].

Prevention or treatment of cartilage loss may also require the inhibition of the actions of certain
pro-inflammatory cytokines, such as interleukin (IL)-1 and tumor necrosis factor (TNF)-α, as
these are important mediators of cartilage matrix degradation and apoptosis after trauma and
disease. Therefore, anti-inflammatory or immunmodulatory mediators, such as interleukin-1
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receptor antagonist (IL-1Ra), soluble receptors for TNF (sTNFR) or IL-1 (sIL-1R), IL-4 or
IL-10, inhibitors of matrix metalloproteinases, and others may be administered to effectively
reduce loss of repair cells and matrix [148].

Inhibitors of apoptosis or senescence, such as Bcl-2, Bcl-XL, hTERT, i(NOS) and others (Table
1), may also be beneficially employed in order to maintain cell populations at the injury site,
which are capable of favorable repair responses [39,41]. Different candidate cDNAs might
also be administered in combination, especially when favoring complementary therapeutic
responses. For example, the combined administration of an anabolic growth factor (e.g. IGF-1)
together with an inhibitor of the catabolic action of inflammatory cytokines (e.g. IL-1Ra) has
the potential to control matrix degradation as well as to allow partial restoration of the damaged
cartilage matrix [73,132].

Strategies to gene therapy in the repair of articular cartilage
There are many strategies that can be used to deliver exogenous cDNAs for the treatment of
diseased or damaged cartilage. For a successful approach, several factors have to be taken into
account, including the extent of cartilage pathology, disease processes, and the biological
activity of the gene product, among others. A key component for any gene therapy application
is a vector that efficiently delivers the cDNA of interest to the target cell, and enables transgene
expression of a suitable level and duration to affect the desired biological response.
Furthermore, an understanding of the natural behavior of the target cell, such as its half-life,
rate of division, and infectability with the vector are also essential to the effectiveness of the
procedure. The properties of commonly used vectors in gene therapy applications are
summarized in Table 2, and have been extensively reviewed elsewhere [136,168]. Gene-
transfer strategies in which these vectors are currently used for cartilage repair, range from
those as simple as direct delivery of a vector to a defect, to synthesis of cartilaginous constructs
through genetically augmented tissue engineering procedures. We will present below an
overview on the properties of commonly used vectors in gene therapy applications (Table 2),
and will discuss their use in the context of the different delivery strategies to cartilage defects.

There are two general modes of intra-articular gene delivery, a direct in vivo, and an indirect
ex vivo approach (Figure 1). The direct in vivo approach involves the application of the vector
directly into the joint space, whereas the ex vivo approach involves the genetic modification
of cells outside the body, followed by re-transplantation of the modified cells into the body.
The choice of which gene transfer method to use is based upon a number of considerations,
including the gene to be delivered, and the vector used. In general, adenovirus, herpes simplex
virus, adeno-associated virus vectors, lentivirus and non-viral vectors may be used for in
vivo and ex vivo delivery (Figure 1, Table 2). Retroviral vectors, because of their inability to
infect non-dividing cells, are more suited for ex vivo use. Ex vivo approaches are generally
more invasive, expensive and technically tedious. However, they permit control of the
transduced cells and safety testing prior to transplantation. In vivo approaches are simpler,
cheaper, and less invasive, but viruses are introduced directly into the body, which limits safety
testing.

Toward the treatment of damaged articular cartilage, the three primary candidate cell types to
target genetic modification are synovial lining cells, chondrocytes, and mesenchymal stem
cells.

Gene delivery to the synovium
The simplest strategy for gene delivery to diseased joints is by direct intra-articular injection
of a recombinant vector [60,61]. For this application, the two primary tissues to consider are
cartilage and synovium. Within articular cartilage, chondrocytes are present at low density and
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reside at varying depths within the dense matrix. Because of this, efficient genetic modification
of chondrocytes in situ has not been effectively achievable [32,62,170,192]. The synovium, in
contrast, is a tissue that is much more amenable to gene delivery. It usually exists as a thin
lining of cells that covers all internal surfaces of the joint except that of cartilage, and thus has
a relatively large surface area, and is therefore the predominant site of vector interaction. Direct
intra-articular injection of vector or modified cells results in synthesis and release of therapeutic
proteins into the joint space, which then bathe all available tissues, including cartilage. Using
various types of vectors in ex vivo and in vivo approaches, considerable progress has been made
towards defining the parameters critical to effective gene transfer to synovium and prolonged
intra-articular expression. The effectiveness of synovial gene transfer of various transgenes is
well documented in research directed towards rheumatoid arthritis [148]. Ex vivo gene delivery
to joints has since been taken into phase I clinical trial and shown to be feasible and safe in
humans with RA [46,50].

Although most of the work involving direct intra-articular gene delivery has been focused
toward the study and treatment of RA, data are beginning to emerge of its potential for treating
OA (reviewed in [47]), and to augment repair approaches of focal cartilage defects (Table 3)
[31,58,164,171]. For example, encouraging results have been reported for adenovirally
delivered IGF-1 or IL-1Ra using animal models for OA and localized cartilage injury [32,
54]. While it is possible to achieve biologically relevant levels of transgene expression by both
direct and ex vivo gene transfer to synovium, this approach is not compatible with the delivery
of certain growth factors. For example, adenoviral mediated delivery of TGF-β1 or BMP-2 to
the synovial lining was found to generate joint fibrosis, extreme swelling, osteophytes and
cartilage degeneration [8,56,57,120]. Considering these results in the context of cartilage
repair, synovial gene transfer may be more suitable for delivering chondroprotective agents
rather than strong anabolic transgenes with pleiotropic effects of their products. Many anti-
inflammatory cytokines have this property (see Table 1).

Gene delivery to cartilage defects
For the gene-based delivery of certain growth factors or intracellular proteins, a strategy
whereby the transgenes are more localized, and the gene products contained within the cartilage
lesion, appears to be most prudent. Possibly, the most direct manner by which to achieve this
goal is by implantation of a three-dimensional matrix pre-loaded with a gene delivery vehicle
into a defect, allowing infiltrating cells to acquire the vector and locally secrete the stimulating
transgene products [18,48]. Genetically activated implants have been designed to augment the
healing of bones, ligaments and also cartilage [17,34,48,140,141,150]. For example, hydrated
collagen-glycosaminoglycan matrices containing adenoviral vectors have been found to
promote localized reporter gene expression in vivo, following implantation into osteochondral
defects in rabbit knees, for at least 21 days [140]. However, given the usually limited cell supply
at the cartilage lesion site, it is not yet known whether this type of approach can induce a
sufficient biological response for repair. In order to increase the cellularity of the graft, while
preserving the feasibility of the procedure within one operative setting, the genetically activated
matrix could be mixed together with autologous cells, which are intraoperatively readily
available, e.g. cells from bone marrow aspirates (Figure 1). Such an abbreviated, genetically
enhanced tissue engineering approach would thus save time and costs, while avoiding labor-
intensive ex vivo culture of cells [48,140]. Their limitation, however, is the lack of control over
gene transfer following implantation.

As there are several advantages, gene transfer has mostly been used to augment ex vivo cell
delivery approaches for cartilage repair (Figure 1). Such an approach delivers a pure population
of cells, that can be selected under controlled conditions; the graft is highly cellular, localizes
transgene expression to the injury site without administration of free vector, and there is the
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possibility for safety testing prior to transplantation. In the context of ex vivo gene delivery to
cartilage defects, several experimental studies have been performed, exploring gene transfer
to chondrocytes or mesenchymal progenitor cells.

Gene transfer to chondrocytes
A major advantage of using autologous chondrocytes as cell source for cartilage repair is that
their application has already found the way out of the experimental stadium to clinical practice
[20]. In recent years, autologous chondrocyte transplantation (ACT) has become a clinically
adopted procedure for cartilage defects, especially when marrow stimulation techniques failed
to generate good clinical results [145]. In order to further improve the quality of the repair
tissue, attempts have been made to enhance this procedure by the use of genetically-modified
chondrocytes. Although chondrocytes have been somewhat resistant to transfection with
plasmid DNA, certain lipid-based formulations have been found to enhance the efficiency of
DNA uptake [106]. Viral based vectors, however, are capable of generating far higher levels
of transgene expression with greater persistence. Monolayer expanded chondrocytes are
readily transduced by viral vectors, such as Moloney Murine Leukemia Virus (MLV),
lentivirus, adenovirus and AAV. Adenoviral-mediated delivery of various transgenes, such as
TGF-β1, BMP-2 , IGF-1 or BMP-7, has been shown to stimulate the production a cartilage-
specific matrix rich in collagen type II and proteoglycans, and a decreased tendency towards
dedifferentiation [75,130,131,157,159]. Transfer of cDNA encoding matrix molecules, such
as the collagen type II minigene, led to enhanced extracellular matrix production of human
fetal chondrocytes [37]. Transduction with the transcription factor SOX-9 increased collagen
type II expression of chondrocytes in three-dimensional culture in vitro [99,167], whereas
overexpression of the transcription factor Runx-2 (Cbfa-1) stimulated chondrocyte maturation
and induced a hypertrophic phenotype, expressing high levels of collagen types II and X,
alkaline phosphatase and osteogenic marker genes [44,84].

Having shown that chondrocyte biology can be positively influenced by genetic modification,
research focus has shifted towards their efficient delivery to cartilage lesions. The first approach
would be the delivery of genetically modified chondrocytes in suspension. Several studies have
shown that genetically modified chondrocytes are capable of expressing transgene products at
functional levels following engraftment onto cartilage explants in vitro [42]. In such systems,
genetic-modification with IGF-1 [107], FGF-2 [109], or SOX9 [33] led to significant
resurfacing and thicker tissue enriched with proteoglycans and collagen type II, compared to
transplanted control cells [106]. In addition, adenoviral-mediated IL-1Ra gene transfer to
chondrocytes resulted in resistance to IL-1-induced proteoglycan degradation after
engraftment [11]. As an alternative to delivery in suspension, efforts have also been made to
augment tissue engineering procedures using genetically modified chondrocytes (Figure 1C).
For this, the cells are transduced/transfected in monolayer and then seeded into a matrix for
subsequent transplantation into chondral or osteochondral defects. In such three-dimensional
culture systems, several transgenes have shown promising results in maintaining and
promoting the chondrogenic phenotype in vitro, including TGF-β1, BMP-2, -4, -7, IGF-1,
SOX9 among others [164,171,177].

Initial studies demonstrated that chondrocytes efficiently expressed reporter genes in chondral
and osteochondral defects following genetic modifications with adenoviral, AAV, retroviral
or plasmid vectors, and that transgene expression was prolonged for several weeks when the
genetically-modified chondrocytes were seeded in three-dimensional matrices [12,82,89,
108]. Results of efficacy studies are just beginning to emerge, showing the effects of genetically
modified chondrocytes in cartilage lesions in vivo (Table 3). In an ex vivo approach,
adenovirally-transduced chondrocytes expressing BMP-7 [75], incorporated in a matrix of
autogenous fibrin, were implanted into full thickness articular cartilage defects in horses [75].
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Four weeks after surgery, an increased tissue volume and accelerated formation of a
proteoglycan and collagen type II rich matrix could be observed in the BMP-7 treated defects
compared to control defects treated with irrelevant marker genes. However, after 8 months,
the levels of collagen type II and proteoglycan, and the mechanical characteristics of the treated
defects compared to the controls were similar. This was attributed in part to the declining
number of allografted chondrocytes that persisted in the defects after 8 months [75].
Nevertheless, it is encouraging that genetically modified chondrocytes can be used to augment
a cartilage repair process in a large animal model.

Gene transfer to mesenchymal stem cells
The use of autologous chondrocytes for the repair of articular cartilage is limited, as they have
to be isolated from a very limited supply of healthy non-weight-bearing articular cartilage,
which has to be surgically removed, with the risk of donor site morbidity. Furthermore,
chondrocytes dedifferentiate during expansion with a subsequent loss of the chondrocytic
phenotype. With regard to cell- and gene-based approaches to cartilage repair, mesenchymal
progenitor cells, also referred to as mesenchymal stem cells (MSCs), provide an attractive
alternative to chondrocytes. Although no clear phenotype has been described, through the use
of the proper culture conditions, expanded MSCs can be stimulated to differentiate along
specific pathways such as chondrogenesis, adipogenesis, and osteogenesis [23,25,26,28,86,
92,134,135,146,175-177]. MSCs have been isolated from several sources, including bone
marrow [147], trabecular bone chips [134], adipose tissue [198], periosteum, perichondrium
and others, and have been shown to maintain their multilineage potential with passage in culture
[195]. In order to harness MSCs for cartilage tissue engineering, analyses of the appropriate
three-dimensional microenvironment to stimulate MSCs toward chondrogenesis in vitro und
in vivo have been performed extensively, with factors such as TGF-β1, 2, -3, and BMP-2
emerging among the most popular candidates (see also Table 1). This research has led to the
first clinical application of autologous bone marrow stromal cells for the repair of full-thickness
articular cartilage defects in humans, which resulted in stable fibrocartilage tissue formation
at the defect site [93,187]. However, a successful use of MSCs to aid cartilage repair by means
of generating a stable hyaline-rich cartilage repair tissue in vivo, likely requires the efficient
delivery of factors to stimulate MSCs toward chondrogenesis, and maintenance of an articular
cartilage phenotype without ossification, fibrinogenesis, or inflammation [23,80,177].

In order to meet these requirements, gene therapy approaches hold promise for efficient
implementation in cartilage repair procedures. In this context, MSCs are readily transduced by
recombinant adenoviral, retroviral, lentiviral, AAV [24,57,195,196] and foamy viral vectors
(A. Steinert and A. Rethwilm, unpublished observation). Specific liposomal formulations were
used with some efficiency [69,106,107], as well as molecular vibration-based methods [160].
In vitro chondrogenesis has been shown, following plasmid-mediated BMP-2 and BMP-4 [1,
163], retrovirus-mediated BMP-2 [27], and adenovirus-mediated BMP-13 gene transfer in the
murine mesenchymal progenitor cell line C3H10T1/2. Marrow-derived, primary mesenchymal
progenitor cells, genetically modified to express TGF-β1 or BMP-2, were also found to undergo
chondrogenesis in aggregate culture, in contrast to IGF-1 modified cultures and reporter gene
controls [196]. Interestingly, chondrogenesis in these cultures was also dependent on the level
and duration of transgene expression and the viral load, indicating that these factors have to
be carefully optimized for a successful in vivo translation of this technology [196].

Some first studies have been performed applying MSC-mediated gene delivery for cartilage
repair in vivo. A variety of reporter genes have been successfully delivered to osteochondral
defects via periosteal, perichondral or marrow derived MSCs [116,138,140,164,171]. Only a
few studies have been conducted using therapeutic genes via MSCs thus far.
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A genetically enhanced tissue engineering approach used constructs fabricated of retrovirally-
transduced periosteal cells expressing BMP-7, which were seeded into polyglycolic acid
scaffolds before transplantation into rabbit osteochondral defects [116,117]. The defects
treated with BMP-7 modified progenitors revealed improved regeneration tissue of cartilage
and bone, compared to controls after a maximum of 12 weeks post-implantation. In a study
using a similar experimental approach, genetically modified periosteal cells transduced to
express sonic hedgehog (SHH) were compared to the delivery of the BMP-7 cDNA, which
resulted in a better overall repair of the SHH compared with the BMP-7 treated defects after
12 weeks postoperatively, and both were superior to marker gene controls [67]. Using the same
animal model, constructs of a collagen type I hydrogel and marrow derived MSCs following
liposomal GDF-5 (CDMP-1) gene delivery were shown to enhance cartilage repair compared
with marker gene controls [90].

Another approach to study gene-induced chondrogenesis in vivo was devised by Gelse et al.
who used gene transfer to MSCs for the repair of partial thickness cartilage lesions in rats
[57]. The MSCs were isolated from rib perichondrium and, following adenoviral-modification
with Ad.BMP-2 and Ad.IGF-1, delierved via a fibrin glue matrix to partial thickness cartilage
lesions of the patellar groove. Both treatment with BMP-2 and with IGF-1 resulted in formation
of improved repair tissue rich in collagen type II and proteoglycans, compared with the naïve
and Ad.LacZ controls after 8 weeks [57]. However, the majority of BMP-2 treated joints
showed signs of ectopic bone formation and osteophytes, which were not present in the knees
of the IGF-1 treated defects [57].

In order to simplify elaborate and expensive ex vivo tissue engineering procedures, efforts are
underway to facilitate gene delivery approaches to stimulate MSCs at the defect site in vivo
toward chondrogenesis. The simplest way of achieving this aim is maybe via direct vector
delivery to the cartilage defect site. Toward this end, direct application of recombinant AAV
vectors in suspension [32], or of adenoviral vectors incorporated in hydrated collagen-
glycosaminoglycan matrices [140] have been found to promote localized transgene expression
within the repair tissue formed, following transplantation into cartilage lesions in vivo.
However, considerable vector leakage to adjacent synovium was observed [140]. In an attempt
to augment this kind of approach with an autologous cellular and space-filling entity, Pascher
and colleagues demonstrated that when fresh bone marrow aspirates were mixed with a solution
of recombinant adenoviral vectors and allowed to coagulate, MSCs within the coagulum
acquired and expressed the transgene for several weeks after implantation into osteochondral
defects in rabbits [140]. Studies are underway to investigate how these advances can be
harnessed to achieve cartilage repair.

Challenges for gene therapy to promote cartilage repair
Currently used cartilage repair approaches, both experimental and clinical, are still far from
generating a repair tissue that is comparable to the native cartilage tissue quality and stability.
To tackle various obstacles toward successful repair, including matrix degradation,
differentiation or integration insufficiencies, or loss of the transplanted cells and tissues,
efficient delivery of chondrogenic, anti-inflammatory, and anti-oxidative factors seems to be
crucial (Table 1). As most of these factors are recombinant proteins, which have short half
lives, a repeated local administration is likely to be necessary to achieve the desired result, thus
presenting delivery problems. Gene transfer techniques might be adopted that could overcome
the limitations of the current treatments for damaged articular cartilage. The current concepts
in gene therapy for cartilage repair are reviewed here. Various approaches have been shown
to be suited for efficient transfer of exogenous cDNAs to cartilage defects in vivo, and for
achieving sustained expression of the corresponding gene products. Initial efficacy studies
indicate that gene-transfer techniques are potent tools that can indeed stimulate a relevant
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biological response in vivo (Table 3). To date most approaches delivered a strong anabolic
transgene aiming to achieve formation of a hyaline-like cartilage repair tissue in vivo, but with
limited long-term success thus far. As more data surfaces, a clearer picture of the functional
boundaries of current approaches appears. The future challenge therefore is to determine which
combination of transgenes will be most suitable for which aspects of repair, and how best to
deliver and express them.

Toward this end, the use of more refined vector systems seems to be crucial. Current gene
transfer studies to cartilage repair have used vector systems with strong, viral-based promoters
enabling very high levels of expression, thus facilitating study of the biological effects that
may be achieved with a particular gene and gene delivery method. However it is likely that the
stimulation of faithful synthesis of the complex architecture of articular cartilage, followed by
its maintenance long-term will require the use of more sophisticated vector systems capable
of coordinate control of expression. As many gene products proposed for use can have
detrimental side effects if overexpressed in non-target organs such as the heart, lung or kidney,
the characterization of the duration of expression in vivo and the biodistribution of vector and/
or genetically modified cells following delivery, will be critical. Toward this end, there are
several types of cartilage-specific regulatory elements that have been characterized and that
might be incorporated into gene delivery systems, such as promoters for the cartilage-derived
retinoic acid-sensitive protein (CD-RAP), the procollagen type II α1 (COL2A1), or the
aggrecan gene [96,100,127,128,158,173,180,191,197].

Because cartilage injuries are not life-threatening, the safety of gene transfer approaches for
repair is of particular importance. To harness the potential of this technology for clinical use
is therefore strongly dependent on the use of safe and efficient vectors, transgenes and delivery
systems.
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Figure 1.
Gene transfer approaches for the treatment of cartilage defects. (A) For in vivo gene transfer,
free vector is either injected directly into the joint space, or incorporated into a biologically
compatible matrix before implantation into a cartilage defect (gene activated matrix (GAM)
implantation). Resident cells that encounter the vector acquire the desired gene, and genetically
modified cells secrete the transgene products that influence the regeneration of articular
cartilage. (B) Abbreviated ex vivo genetically enhanced tissue engineering to treat cartilage
defects. A vector is incorporated into the matrix together with cells that are harvested at the
same operative setting, such as stromal cells from bone marrow aspirates. (C) Ex vivo
genenetically enhanced tissue engineering for cartilage repair involves the harvest and
expansion of target cells in vitro, which are subsequently infected with the desired vector. The
transduced cells then may be selected, and seeded into a biological matrix before the construct
is transplanted into a cartilage defect. Depending on the approach chosen, ubiquitous or local
transgene expression (TGE) is induced by the genetically modified cells, and the gene products
could beneficially influence cartilage repair by either transplanted cells as well as those that
may migrate into the defect site.
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Table 1
Classes of gene products that aid cartilage repair

Therapeutic mechanism Gene product Examples/References

Stimulation of chondrogenic differentiation

 Anabolic growth factors TGF-β 1, 2, 3 [14,95,135,138,157,190]

BMP-2, -4, -7 [1,27,36,38,57,70,75,116,139,154,155,163]

CDMP-1, -2, -3 (GDF-5, -6, -7) [68,90,133,173]

Wnts [51,81,156,178]

 Signal transduction molecules Smad-4, -5 [76,83,151]

 Transcription factors SOX9, -5, -6 [33,97-99,166,167,172]

Brachyury [77]

Stimulation of cartilage matrix synthesis and/or
cell proliferation

 Anabolic growth factors TGF-β 1, 2, 3 [14,95,135,138,157,190]

BMP-2, -4, -7 [1,27,36,38,57,70,75,116,139,154,155,163]

CDMP-1, -2, -3 (GDF-5, -6, -7) [68,90,133,173]

IGF-1 [53,55,73,107,110,119,131,132,153,159,169,179,181,190]

PDGF, EGF, HGF [7,153,169,183,186,188]

 ECM component Type II collagen minigene [37]

COMP [118]

 Enzymes for GAG synthesis GlcAT-1 [13,182]

Inhibition of osteogenesis/hypertrophy

 Growth factors

  Inhibiting TGF-β/BMP action Noggin, Chordin [72,142]

  Inhibiting terminal differentiation PTHrP [45,124]

IHH, SHH, DHH [67,85,165,185,184]

 Signal transduction molecules Smad 6, 7 [83,151]

mLAP-1 [152]

Anti-inflammatory

 IL-1 blockage (cytokine antagonist) IL-1Ra, sIL-1R, ICE inhibitor [6,8,10,11,52,62-64,73,113,129,132,137,143,149]

 TNF-α inhibition (cytokine antagonist) sTNFR, anti-TNF-antibodies, TACE
Inhibitor

[29,30,35,60,103,148]

 MMP Inhibition (proteinase inhibitor) TIMP-1, -2, MMP inhibitors [88,103,148]

 Cytokines IL-4, -10, -11, -13 [2,3,4,5,87,94,101,103-105,111,126,129,189]

 Enzymes for glucosamine derivates (IL-1
inhibition)

GFAT [65,66]

Senescence inhibition

 Inhibition of telomere erosion hTERT [115,174]

 Free radical antagonist NO-(iNOS) antagonists, SOD [16,43,101,112,115]

Apoptosis inhibition
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Therapeutic mechanism Gene product Examples/References

 Caspase inhibition Bcl-2, Bcl-XL [39-41]

 Fas-L blockage Anti-FasL [40,78,192]

 NO-induced apoptosis Akt, PI-3-kinase [102,125]

 TNF-α, TRAIL Inhibition NFκB [60,79,193]
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Table 2
Nonviral and viral vectors for orthopaedic gene therapy applications

Vector Description Advantages Disadvantages

Naked DNA Naked or uncomplexed DNA

Easy to manufacture
Non-infectious (safety)

Low transfection efficiency
Transient transgene expression (less than 1 week)
Inflammatory

Liposomes Plasmid DNA delivered in a
phospholipid vesicle that
merges with host cell

Others DNA-injection,
Biolistics (gene gun),
Electroporation,
Ca/P precipitation

Adenovirus dsDNA virus
35 kb genome
Episomal
Delivers DNA
Divided in 100 map units (E1-
E4)
7.5 kb capacity
Multiple serotypes

Infects dividing and non-dividing
cells
High transduction efficieny
High levels of transgene expression
Straightforward production
High titer
Approved for use in clinical trials

Transient transgene expression
Immunogenicity of transduced cells
Cytotoxic at high doses

Adeno-Associated Virus (AAV) ssDNA virus
8 serotypes, with AAV-2 with
highest chondrocyte and MSC
tropism
Wild-type AAV integrates
Recombinant AAV appears to
be non-integratig
4 kb capacity

Infects dividing and non-dividing
cells
No viral protein expression in
infected cells
Not known to cause disease in
humans
Biologically relevant transgene
expression after direct i.a. delivery

Transient transgene expression
Moderate transduction efficiency
Moderate levels of transgene expression
Difficult to manufacture
Small capacity

Herpes Simplex Virus (HSV) dsDNA virus
Delivers episomal DNA
40 kb capacity

Infects dividing and non-dividing
cells
Very high transduction efficiency
Very high levels of transgene
expression
Large capacity

Transient transgene expression
Viral protein expression in infected cells
Cytotoxic
Immunogenic

Foamyvirus (FV) RNA virus
Integrates in genome
10-13 kb capacity

Large capacity
Persistent transgene expression
No viral protein expression in
infected cells
Favorable integration pattern
Foamy/adeno hybrid vectors
possible

Possible insertional mutagenesis
Low titer with FV

Moloney Murine Leukemia Virus
(MoMLV)

RNA virus
Integrating
4-6 kb capacity

Persistent transgene expression
No viral protein expression in
infected cells

Only infects dividing cells
Possible insertional mutagenesis

Lentivirus RNA virus
Integrates in genome
4-6 kb capacity

Infects dividing and non-dividing
cells
High transduction efficiency and
persistent transgene expression
No viral protein expression in
infected cells

Possible insertional mutagenesis
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