Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading

Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations. [DOI: 10.1115/1.4024830]
of patients is limited. Since it operates at such low frequencies, there is little concern for development of vibration syndrome after prolonged use.

Previous Studies

The healing process of long bones can be stimulated by mechanical means. This stimulation of the bone tissue is caused by the rhythmic movement of fluid along the length of the bone and the resulting internal pressures and displacements [1]. The enhanced bone growth caused by such tissue stimulation can enhance the healing speed of fractures within the bone as well as increase the density of the bone, something that could prove useful in the prevention or even treatment of osteoporosis. Several areas of research have opened within the field of biomedical engineering relating to the purposeful stimulation of bone growth. Figure 1 depicts the working hypothesis of fluid movement within a bone and mechanical loading of a bone.

To apply such a load, a device would need to have a means of producing a transverse force directly to the end of a long bone, such as at the knee. A cyclic force applied on such an area would force a slight shift of the fluid within the bone towards the opposite end of the bone in a controlled fashion. While no such device currently exists for use on humans, a new interdisciplinary study in our research group seeks to develop a portable device designed for humans; the proposed device will be used in future testing. While such a device has not been used for humans prior to this paper, research has been performed in the past using various animals and similar devices for animals while trying to determine the degree of effectiveness of such treatment. Figure 2 shows a table-top type device that was used to load the knee of rats and small pigs. These devices were shown to be effective in inducing new bone tissue. Further details and research can be found in Refs. [5–7].

Design

The device was designed to provide a portable means of safely loading a human knee with the goal of stimulating increased bone tissue growth. This goal introduced several challenges that required a careful design to overcome. The device must provide sufficient force in a transverse load to the joint without being bulky or unbalanced. The device must be sufficiently light as to be easily mobile. The device must have some form of control that allows for selection of specific run times, frequencies, and forces. For the sake of mobility, the control must also be easily transported with the device.

Design Process and Constraints. Various constraints are present when making such a device. To quantify these constraints, certain concrete targets were set to help refine the decision making process. Firstly, the device must run at a relatively low voltage for safety reasons, preferably less than 25 V. Next, the device must be adjustable, allowing at least a variance of 5 cm in the components holding the knee to accommodate varying knee diameters. The device has to be compact, with the mechanical components taking up no more than a (30 cm \(\times\) 30 cm \(\times\) 15 cm) space for easy storage in a transportable case. The device should be lightweight, weighing no more than 4 kg with less being always preferred. The device must be capable of producing a range of forces to be useful in future research, not just fixed force magnitudes. The force magnitudes that the device can produce must be at least 30 N. The device must be capable of running at any frequency between 1 and 5 Hz. Lastly, the device was required to have a degree of user friendliness. This constraint was not easily quantifiable, thus concepts were evaluated relative to each other for this constraint. In order to better analyze concepts and consider more options, the design of the device was broken down into functional categories: containment, power source, force generation, force transfer, and control. Bearing the listed constraints in mind, a number of possible solutions were proposed for each major function of the device. Note that not all functional areas of the device were found to affect every constraint.

The function of containment is the part of the device that provides the structure and attachment points for all other functional components. It can be either hard or soft, with a number of possible solutions. The concepts evaluated for this device were a rigid metal frame, a flexible cast, a rigid cast, and a flexible cloth brace.

The power source is what provides the energy for the operation of the device. The design team identified two key options for this function. Concepts that were considered were batteries and a wall outlet.

As mentioned in the previous section, this device had several preceding prototypes and similar devices used for animal testing. These were used as benchmarks and references to the various ideas that were proposed. From these, it was found that the voice coil motor was capable of satisfying many of the requirement and constraints, so this motor was again considered. Other power sources that were also considered were an electric brushless dc motor, a
piezoelectric motor, an air pump with a piston, and electroactive polymers.

In the past prototypes and research devices, direct force transmission was most frequently used. However, it was found from these prototypes and previous devices used in animal testing that a motor alone was hard to incorporate into a compact and a well-balanced design. Thus, power generation units used in conjunction with a mechanism comprised of linkages was proposed as a means of shifting the power generation component into a position that allowed for better balance. Other means of accomplishing efficient force transmission that were also considered were gears, a transfer fluid, and a cam.

Several means of control were also proposed. Regardless of the means, it was decided that the control module for the device must be user friendly, allow for a range of forces and frequencies, and be portable with the device. Because of this last requirement, emphasis was placed on a means of standalone control that did not require connection to a PC. Two primary concepts were evaluated, a timer/amplifier circuit similar to that used in a previous prototype and a microcontroller and amplifier circuit combination.

From the evaluation of various possible solutions, it was decided that the final design would use a voice coil motor with a mechanism that allowed low voltage, easy adjustment, a compact design, variable force, and a range of forces that included the target range. A metal frame was used for the structural support of the device. AC power from a standard wall outlet was used via an adaptor. A microcontroller was used to control the device as it provided a means to add a simple user interface.

Mechanism Design. The mechanism used for the loading device was purposefully made as simple as possible while still approximating linear movement. It is functionally a type of offset crank-slider mechanism but with the apex of the connecting rod being the output instead of the slider or crank. For this setup, the motor shaft is acting as the sliding block while the linkage connecting to the base plate serves as the crank. The rigid pivot arm that connects the motor shaft and crank before ultimately connecting with the pad at the top is the connecting arm. This is shown in Fig. 3.

The device must also accommodate a range of knee sizes to be useful. This necessitates an adjustable side plate on the opposite side with the linkage that can be used to control the distance between the plates, the gap where the knee rests. The proposed design is for a sliding bracket which pinches the base plate between two contact surfaces. These surfaces are loose enough to allow easy sliding over the base plate. However, when a knob is used to turn a short bolt, the surfaces are pressed together tightly, arresting movement. A diagram of this concept is shown in Fig. 4.

Several motors were considered for this device, but ultimately a moving magnet voice coil motor was selected as it provides linear movement with a swift response time and forces within the desired range of 0–30 N. The exact motor chosen was the NCM03-20-089-2LB (Non-Comm Moving Magnet Actuator H2W Technologies Inc.), capable of operating from low to mid frequencies and providing up to 39.6 N of continuous force. Once the dimensions of the motor were obtained, a dimensioned design could be made using the solid modeling software Pro/Engineer developed by PTC whose main headquarters is in Needham, MA. The as-built solid model is shown in Fig. 5.

The range of linear motion that the motor provides is 6.35 mm. This should correspond to a roughly equal or slightly greater amount of motion in the side plate that presses against the knee, but not a lesser amount. Since a linkage with pin joints is used as
the mechanism, the movement will be a linear approximation. The linkage can be mathematically modeled with several equations. These equations will refer to the nomenclature used in the simplified representation of the linkage shown in Fig. 6.

For this application, the lengths \(d_1, d_2, L_1, L_2, L_3, \) and \(c \) are known. The position of the point \((x, y)\) is the output. For this setup, \(u \) is the distance the motor shaft is extended and is the input. The position of point \((x, y)\) can be calculated analytically using vector equations and the law of cosines. The first step in this process is to calculate the value of \(L_0 \). This is given by Eq. (1),

\[
L_0 = \sqrt{(u + d_1)^2 + d_2^2}
\]

(1)

Using this and the known constants, the angles \(\varphi \) and \(\alpha \) can be calculated using the definition of cosine

\[
\varphi = \cos^{-1}\left(\frac{d_2}{L_0}\right)
\]

(2)

\[
\alpha = 90 \text{ deg} - \varphi
\]

(3)

Using the law of cosines, the angles \(A \) and \(B \) can be calculated. These are given in Eqs. (4) and (5),

\[
A = \cos^{-1}\left(\frac{L_0^2 + L_1^2 - L_2^2}{2L_0L_1}\right)
\]

(4)

\[
B = \cos^{-1}\left(\frac{L_0^2 + L_2^2 - L_3^2}{2L_0L_2}\right)
\]

(5)

Using angles \(A \) and \(B \), angles \(\theta_2 \) and \(\theta_3 \) can be easily calculated. These expressions are shown in Eqs. (6) and (7),

\[
\theta_2 = 270 \text{ deg} - \varphi - B
\]

(6)

\[
\theta_3 = A + \alpha + \gamma - 180 \text{ deg}
\]

(7)

The position of the \(x \) and \(y \) coordinates of point \((x, y)\) can be calculated using the vector equations shown in Eqs. (8) and (9),

\[
x = L_2 \cos \theta_2 + L_3 \cos \theta_3
\]

(8)

\[
y = L_2 \sin \theta_2 + L_3 \sin \theta_3
\]

(9)

Substituting the values calculated in Eqs. (1)–(7), \(x \) and \(y \) can be calculated for any value of \(u \). A program was made in MATLAB 2010, a high-level language for computation developed by MathWorks based in Natick, MA, to calculate the values of \(x \) and \(y \) for values of \(u \) between 0 and 6.35 mm. The code then creates a figure displaying the motion in the \(x-y \) plane and provides the range of motion along the horizontal. From this program, it was calculated that for the max motor displacement of 6.35 mm the lever arm moved 8.07 mm along the horizontal, which provides an improved adjustable range for overcoming the displacement of the soft tissue on the sides of the knee. Figure 7 shows the motion of point \((x, y)\) as a red line. The lever arm and crank are shown in three different positions in black and blue, respectively. As can be seen in the figure, the motion of point \((x, y)\) is not perfectly linear, but makes a fair approximation for this range of motion. Further information on mechanics of mechanisms can be found in Ref. [12].

Material Selection. The materials for the final design were selected to achieve both strength and minimal weight. Aluminum
was chosen for the base plate, side plates, and the adjustable side as it is lightweight, but still provides the necessary strength. The pivot arm and lever arm were made of O1 steel. O1 steel has a high carbon content and a correspondingly high modulus of elasticity. This is crucial as these parts are subjected to higher stresses than are found in any other part of the device; it is important to minimize the deflection in these pieces since deflection of these parts would directly affect the range of displacement provided by the mechanism and may also contribute to damping. High density polyethylene was selected for the pads as it allows a slight amount of deformation to increase comfort to the user while still being sufficiently rigid to transfer most of the force to the knee being loaded.

Circuit Design. A microcontroller with an amplifier circuit was used to drive the voice coil actuator [15]. The microcontroller is powered by a 5 V supply; the amplifying circuit is powered by a 19.5 V supply. The voltage supplies share a common ground. The output force of the motor is proportional to the input voltage, which is proportional to the duty cycle of the PWM signal produced by the controller. The PWM signal is turned on and off to produce the loading frequency. The maximum amplitude of the PWM signal produced by the controller is 5 V. This signal is amplified by an enhancement type MOSFET. A 1000 Ω resistor (R3) connects the MOSFET gate to the ground to set the bias voltage. The motor is in parallel with a 5 mF capacitor to smooth the operation and reduce noise. The circuit layout is shown in the diagram in Fig. 8.

Programming Architecture. The HCS12 microcontroller used for the device was programmed using assembly language [13, 14]. The inputs to the controller were five push buttons while the output was a pulse width modulation signal and an LCD display. Upon startup, the controller requests the user to enter the desired force, loading frequency, and run time. Push buttons are used to scroll down the rows and increase or decrease the settings of each option. The force can be set between 5% and 100% duty cycles of the motor (see the section on Test Results for corresponding values in N) with a step increment of 5%. The frequency setting is allowed to range between 0 and 20 Hz with a step increment of 1 Hz; the 0 Hz setting corresponds to a constant load which can be used during calibration. The run time can range from 30 s to 30 min with a step increment of 30 s.

Once all settings are entered and the execute button is pressed, the controller runs checks to ensure that the settings are within the acceptable ranges. If a setting is not within the predefined range, the program will branch back to the input screen requesting a new value. If all settings are accepted, the program initializes the remaining variables and waits for the user to press the execute button. Once the execute button is pressed, the controller enters the run loop and begins sending the loading signal to the amplifier circuit and the device will run for its allotted time. The screen will show the current settings and operational time remaining during the run loop. The execute command can be pressed at any time to pause the device and pressed again to unpause; the check for the button press is made within the run loop. The reset button can be pressed at any time for any phase of operation to turn off the device and restart the program through the use of a dedicated interrupt.

As-Built Device. The device was constructed; the material of the mechanical structure is aluminum, the pads are high density polyethylene, and the linkage mechanism is steel. The controller and amplifier circuit were enclosed in a plastic controller box. The device is shown in Fig. 9. A custom plastic casing is planned for the device in the future for esthetic reasons.

Computer Aided Analysis

The knee-loading device design, both electrical and mechanical, was analyzed with the assistance of software specific for the task. A voltage analysis was done in PSpice9, a circuit simulation...
Information on the details of finite element analysis and ANSYS can be used to conduct a structural and modal analysis. The model from Pro/Engineer was imported to ANSYS for the analysis. The critical to ensure that there are no loading settings that would produce frequencies near the natural frequency of the device. The analysis was performed to determine the natural frequency of the assembly. This is important since it is related to the dynamic response characteristics of the component. The areas of highest stress concentration are found in the base plate of the device. The maximum stress calculated along the base plate is 25.2 MPa. This gives the device a 9.5 factor of safety as the yield strength of the 6061 alloy T6511 temper aluminum used in the base plate is approximately 241 MPa. The factor of safety in steel lever arm is even higher since the stress is lower and the yield strength is higher (379 MPa for the O1 tool steel used). The next characteristic of the static analysis to consider is the total deflection of the arm as they apply the load to the patient’s knee. The maximum deflection of the arm of the device was found in the static load analysis to be 8.07 mm. However, this deflection takes place in the upper section of the application arm as can be used to visualize the load on the knee. The majority of the support to the knee will take place in the middle portion of the application arm. This section only deforms 0.54 mm, which corresponds to 6.7% of the maximum axial motion of the lever arm, an acceptable amount for this application.

Modal Analysis Results. Modal analysis provides valuable information about the dynamic response characteristics of the knee loading device. This information provided by this analysis includes the natural frequencies and mode shapes of the simple and outer geometry shapes at room temperature. This serves to determine the viability of the design and the level of noise and vibration that can be expected. The basic criteria which determine the dynamic response levels are the proximity of the operating frequency to resonance, excitability of the mode, and force and damping levels. Information regarding the computation of natural frequencies and system responses can be found in Ref. [17].

From the modal finite element analysis, the first modal frequency was found to occur until almost 62 Hz. This is well above the maximum operating loading frequency of 20 Hz.

Experimental Setup
Two types of experiments were run in this study. The first set of experiments was made in order to characterize the force applied by the device for the different motor and loading frequencies. For these experiments, the setup consisted of the device without the polyethylene pads. A solid steel bar that stretched from one supporting side to the other was placed in the loader. This steel bar was set on an aluminum block of sufficient width to provide stability. A load cell was placed directly on the end of the steel plate in direct contact with the aluminum side plate on the side of the device with the mechanism.

Once the device was successfully characterized, an experiment was performed using an artificial knee. The knee used was made of polymers and included both artificial flesh and artificial bone. The aim of the test is to show the viability of the device and provide an example of tests that could run with real human knees for research during a clinical trial. The setup of the experiment placed the fake knee in the device while a linear displacement sensor measured the displacement of the knee and a load cell measured the force applied to the knee. Figure 12 shows an image of this setup.

A dSPACE real-time rapid prototyping controller called MicroAutoBox II (ACE MABX II) from dSPACE, Inc., Paderborn, Germany was used to record the measured displacement values. The force data was recorded using software from the load cell manufacturer Futek. Data recording was meant to be...
synchronized; so both the dSPACE and the Futek program were started simultaneously. A sampling rate of 1 kHz was used for the collection of the load and displacement values. Because the programs were started manually, some human error was introduced in the synchronization. The data curves shown in the results section had to be matched as closely as possible manually. This likely introduced some error as it is possible that a very slight phase shift may exist due to energy absorption by the plastics in the fake

![Figure 11](image1.png)

(a) Loading and constraints of ANSYS analysis **(b)** Von-Mises stress analysis

![Figure 12](image2.png)

Figure 12 Device setup for displacement and force measurements using an artificial knee

![Figure 13](image3.png)

Figure 13 Microcontroller output at 1 Hz loading frequency and 50% PWM duty cycle
knee; this real phase shift, if it exists, would be eliminated when
the data was manually synchronized. To allow perfect data syn-
chronization, future tests will be conducted with a load cell com-
patible with dSPACE.

Results

Once the device was fabricated as designed, several tests were
run to ensure the device operated as anticipated and to simulate
possible experiments that could potentially be conducted during a
clinical trial. The first test that was run was a simple voltage read-
ing of the signal produced by the controller. While basic, it was
necessary to affirm that the electrical system was outputting at the
correct frequencies, both PWM and loading. Figure 13 shows the
output from the microcontroller at 50% duty cycle and a 1 Hz
loading frequency.

As can be seen in Fig. 13, the microcontroller output is exactly
what it should be. After the controller signal was verified, the
force that was transmitted through the mechanism was directly
measured with a load cell. The force was measured at multiple
loading frequencies and PWM duty cycles. The force outputted by
the motor was found to not be a perfectly linear function of the
duty cycle. Figure 14(a) shows the average peak force transmitted
through the mechanism versus the PWM duty cycle. The average
was taken over 1 min of continuous operation. Figure 14(b) shows
the maximum force reading that occurred during the same period.
As can be seen from these figures, the maximum force did not sig-
nificantly vary with the frequency; the average force, however,
was found to decrease slightly with increasing frequency. This is
side effect of the large capacitor in parallel with the motor that is
used to eliminate noise. The effect is small, particularly over the
range of loading frequencies of most interest to the planned stud-
ies (1–5 Hz).

Once the device was successfully characterized, an experiment
was performed using an artificial knee. Figure 15 shows the force
and corresponding displacement over a period of five cycles at
duty cycles of 50% and duty cycles of 100%. Such experiments
when performed on an actual knee could be used to assist in the

Fig. 14 (a) Average peak force measured over 1 min of operation at 1 and 5 Hz.
(b) Maximum peak force occurrence measured over 1 min of operation at 1 and 5 Hz.
study of the force versus displacement of human tissue, a highly nonlinear reaction, as well as the effects of light mechanical loading to the bone tissue.

Conclusions

The proposed device has been designed to fulfill the voltage, weight, frequency, and other constraints. The device is made mostly of aluminum components with some steel components for the mechanism. The electrical response to the controller input was predicted in PSpice and found to be reasonably smooth. The deformed geometry, stress distribution, and modal frequencies, were analyzed with ANSYS workbench and found to be well within acceptable ranges.

The device was characterized for different loading frequencies and pulse width modulation duty cycles. While the motor response to increased power is not perfectly linear, the measured values for force will allow selection of proper duty cycles for desired forces. Tests were run with an artificial knee that demonstrated the capability of the device to be used as a means of collecting various types of data for future experiments. This device will soon be ready for submission for clinical trial, and shows promise as both a means for rehabilitation and strengthening of bone in a safe and easy manner.

Acknowledgment

This work was supported in part by an IUPUI scholarship (D.F.) and NIH R01AR052144 (H.Y.). Special thanks to Andrew Rophie and Mina Wanis of the Department of Biomedical Engineering at IUPUI for technical assistance.

References

