Effect of KH-BaRoKer-SeongJangTang based on traditional medicine theory on longitudinal bone growth

Min-Ho Kim¹, Hyeonseok Jeong², Myungsuek Park³, Phil-Dong Moon⁴,*

¹High-Enthalpy Plasma Research Center, Chonbuk National University, 664-14, 1Ga Deokjin-dong, Deokjin-gu, Jeonju 561-756, Republic of Korea; ²Kyungheebaroker Clinic of Korea Traditional Medicine, 1206 Ara tower, Seochodaero 77 Gil 3, Seocho-gu, Seoul 137-856, Republic of Korea; ³Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul 130-701, Republic of Korea

ABSTRACT

KH-BaRoKer-SeongJangTang (KBS) is a recently developed formulation by using traditional drugs considering traditional medical theory of Oriental books such as ShinNongBonChoGyeong and JuRye, which has been used to improve the growth of child in Korea. Although KBS is usually prescribed to many children who are in retard for their age, its pharmacological effects have not been fully understood in experimental models. The aim of this study was to evaluate the effects of KBS on bone growth. Growth plate thickness and bone parameters such as bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), connection density (Conn.D), and total porosity were analyzed by means of microcomputed tomography. Serum insulin-like growth factor-I (IGF-I) levels were measured by enzyme-linked immunosorbent assay. Hepatic IGF-I mRNA expression was analyzed by real-time polymerase chain reaction. Phosphorylation of signal transducer and activator of transcription5 (STAT5) was investigated using Western blot analysis and immunohistochemistry. The thickness of growth plate was increased by KBS. BV/TV, Tb.Th, TbN, Conn.D, and total porosity were improved by KBS. Hepatic IGF-I mRNA and serum IGF-I levels were elevated by KBS. Phosphorylation of STAT5 was increased with administration of KBS. These results suggest that KBS would be helpful to children who are in retard for their age through the elevation of IGF-I.

Keywords growth plate, bone parameters, insulin-like growth factor-I, signal transducer and activator of transcription5

INTRODUCTION

In mammals, growth of long bones occurs at the growth plate, a cartilaginous structure present in tubular bones and vertebrae (Abad et al., 2002; Lui and Baron, 2011). The growth plate is a layer of cartilage present in growing long bones between the epiphysis and the metaphysis (Abad et al., 2002). The rate of longitudinal bone growth at the growth plate is controlled by a system of endocrine signals including growth hormone (GH), insulin-like growth factor-I (IGF-I), thyroid hormone, androgens and estrogens. If a child is undernourished, circulating IGF-I and thyroid hormone decline. In adolescents, undernutrition also causes decline in sex steroids. These endocrine changes suppress the bone growth (Lui and Baron, 2011). To reproduce the undernourishment, a low protein diet was used in mice. Protein-energy malnutrition (PEM) is a major form of malnutrition and is defined as an imbalance between food intake (protein and energy) and the amount that the body requires to ensure the most favorable growth and function (Fock et al., 2010).

GH is a major regulator of growth and development (de Vos et al., 1992). Actions of GH are initiated by binding to the GH receptor (GHR) on the cell surface (Brooks and Waters, 2010). Binding of GH to GHR activates receptor-associated intracellular tyrosine protein kinase Janus kinase 2 (JAK2), which phosphorylates signal transducer and activator of transcription 5 (STAT5). The phosphorylated STAT proteins translocate to the nucleus, where they bind to specific DNA sequences and regulate gene transcription (Le Roith et al., 2001). Among the signal cascades from the GHR, the JAK2-STAT5 pathway is regarded as a major pathway that mediates the action of GH on gene transcription in the liver (Davey et al., 1999; Rabkin et al., 2005). This pathway was shown to be responsible for the transcriptional action of GH on IGF-I (Woelfle et al., 2003). IGF-I is a mitogenic factor for various cells and plays an important role in cell growth and survival, and the majority of plasma IGF-I is biosynthesized in the liver (King et al., 2013; Weng et al., 2009; Youreva et al., 2013; Zhang et al., 2006).

KH-BaRoKer-SeongJangTang (KBS) is a recently developed formulation by using traditional drugs considering traditional medical theory of Oriental books such as ShinNongBonChoGyeong and JuRye, which has been used to improve the growth of child in Korea. Although KBS is usually prescribed to many children who are in retard for their age, its pharmacological effects have not been fully understood in experimental models. Thus, this study used a murine model to investigate how KBS and its constituents, arginine (Arg) and glutamine (Glu) affect the bone growth.

© 2014 by Association of genuine traditional medicine
Table 1. Composition of Experimental Diets

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Standard chow diet (g/kg diet)</th>
<th>PEM diet (g/kg diet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein (> 85% protein)</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td>Sucrose</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Fiber</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Corn oil</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Mineral mixturea</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Vitamin mixtureb</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>L-Methionine</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Choline bitartrate</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Cornstarch</td>
<td>556.5</td>
<td>716.5</td>
</tr>
</tbody>
</table>

Note: aIsocaloric diets providing 1716.3 kJ/100 g; bMineral and vitamin mixtures were prepared according to the 1993 recommendations of the American Institute of Nutrition for adult mice (Reeves et al., 1993).

MATERIALS AND METHODS

Reagents

Arg, avidin-peroxidase, and bovine serum albumin were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Anti-mouse IGF-1 antibody, biotinylated anti-mouse IGF-1 antibody, and recombinant mouse IGF-1 were purchased from R&D Systems (Minneapolis, MN, USA). Phosphorylated (p)STAT5 antibody was purchased from Invitrogen Corp. (Camarillo, CA, USA). STAT5 antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Animals and diets

Male ICR mice (4 weeks old) and diets were prepared from Dae-Han Experimental Animal Center (Eumsung, Republic of Korea), acclimated for 7 days, and then randomly assigned for 2 weeks to adequate protein (CON, 20% protein) or low protein diet (PEM, 4% protein) (Reeves et al., 1993). The protein source was used as casein. Except for the protein content, the two diets were identical and isocaloric (Table 1). After 2 weeks, mice were divided into five groups, CON (adequate protein diet + distilled water (DW)-administered group); PEM (low protein diet + DW-administered group); KBS (low protein diet + KBS-administered group); Arg (low protein diet + Arg-administered group); Glu (low protein diet + Glu-administered group). The mice were fed indicated diet, administered each material three times a week for 12 weeks, housed four to six per cage in a laminar air-flow room, and maintained at a temperature of 22 ± 1°C, a relative humidity of 55 ± 1% throughout the study. The research was conducted in accordance with internationally accepted principles for laboratory animal use and care as found in US guidelines (NIH publication #85-23, revised in 1985).

Table 2. The Ratio of the Components in KBS

<table>
<thead>
<tr>
<th>Components</th>
<th>Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hominis Placenta extract</td>
<td>20.70</td>
</tr>
<tr>
<td>2. Cervi Cornu Colla</td>
<td>18.35</td>
</tr>
<tr>
<td>3. Acanthopanax Root Bark (Acanthopanax sessiliflorus (Rupr. et Maxim.) Seem.)</td>
<td>9.20</td>
</tr>
<tr>
<td>4. Carthami Tinctori Fructus (Carthamus tinctorius L.)</td>
<td>4.60</td>
</tr>
<tr>
<td>5. Atractylodes rhizome white (Atractylodes ovata (Thunb.) DC.)</td>
<td>4.60</td>
</tr>
<tr>
<td>6. Hoelen cum Pini Radix (Pachypodium hoelen Runph)</td>
<td>4.60</td>
</tr>
<tr>
<td>7. Rehmanniae Radix et Rhizoma Preparata (Rehmannia glutinosa (Gaertn.) Libosch. ex Steud.)</td>
<td>4.60</td>
</tr>
<tr>
<td>8. Paeoniae Radix (Paeonia lactiflora Pall.)</td>
<td>4.60</td>
</tr>
<tr>
<td>9. Angelicae Gigantis Radix (Angelica gigas N.)</td>
<td>4.60</td>
</tr>
<tr>
<td>10. Astragal Radix (Astragalus membranaceus Bunge)</td>
<td>4.60</td>
</tr>
<tr>
<td>11. Sojae Semen (Rhusciosa malabitis)</td>
<td>4.60</td>
</tr>
<tr>
<td>12. Ostreae Concha (Ostrea gigas Thunb.)</td>
<td>4.60</td>
</tr>
<tr>
<td>13. Glycyrrhizae Radix (Glycyrrhiza uralensis Fisch)</td>
<td>3.45</td>
</tr>
<tr>
<td>14. Cnidii Rhizoma (Cnidium officinale Makino)</td>
<td>3.45</td>
</tr>
<tr>
<td>15. Cinnamomi Ramulus (Cinnamonum loureirii Nees.)</td>
<td>3.45</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Preparation of KBS

KBS obtained from the Kyungheebaroker Clinic of Korea. Traditional Medicine (Seoul, Republic of Korea) consisted of 15 Korean medicinal drugs (Table 2). Among 15 drugs, Hominis Placenta extract is the most abundant component in KBS, UNICENTA® (UNIMED PHARM, INC., Seoul, Republic of Korea) was substituted for Hominis Placenta extract, because UNICENTA® is a manufactured medicine using Hominis Placenta collected from hospital. UNICENTA® contains Glu and Arg (manufacturer’s specifications). Dilutions were made in distilled water then filtered through a 0.45-µm syringe filter.

Enzyme-linked immunosorbent assay (ELISA)

To measure the level of IGF-I in serum, a modified sandwich ELISA method was used (Moon and Kim, 2011; 2012). In brief, 100 µl aliquots of anti-mouse IGF-1 monoclonal antibody in PBS were coated in 96-well microplate. The plate was incubated overnight at 4°C, washed with PBS containing 0.05 % tween-20 (Sigma, St. Louis, MO, USA), and blocked for 1 h with PBS containing 1% BSA, 5% sucrose and 0.05% NaN3. After washing the plates again, avidin-peroxidase was added and the plate was incubated for 30 min at 37°C. The well was again washed and TMB substrate (Pharmingen) was added. Color development was measured at 405 nm using an automated enzyme-linked immunosorbent assay reader.

Fig. 1. Effect of KBS on tibial growth plate thickness. (A) Representative 3D µCT images of knee joint showing growth plate. (B) The thickness of excised bone growth plate was determined on five points using the Sky Scan 1076. CON, adequate protein diet + DW-administered group; PEM, low protein diet + DW-administered group; KBS, low protein diet + KBS-administered group; Arg, low protein diet + Arg-administered group; Glu, low protein diet + Glu-administered group. Each datum represents the mean ± SEM of three independent experiments. *p < 0.05; significantly different from the CON value. ‘p < 0.05; significantly different from the PEM value.

46
Bone growth by KH-BaRoKer-SeongJangTang

Fig. 2. Effect of KBS on trabecular bone properties. BMD and trabecular parameters of excised bone at the tibia were determined. (A) BMD using 2D μCT. (B-F) Quantified parameters of proximal tibia using 3D μCT: CON, adequate protein diet + DW-administered group; PEM, low protein diet + DW-administered group; KBS, low protein diet + KBS-administered group; Arg, low protein diet + Arg-administered group. Each datum represents the mean±SEM of three independent experiments. *p < 0.05; significantly different from the CON value. p < 0.05; significantly different from the PEM value.

Polymerase chain reaction (PCR) analysis

Using an easy-BLUE™ RNA extraction kit (iNtRON Biotech, Republic of Korea), total RNA was isolated from liver tissues according to the manufacturer’s specifications, as previously described (Han et al., 2011; Moon et al., 2012). The concentrations of total RNA in the final elutes were determined by a spectrophotometer. Total RNA (1 μg) was heated at 65°C for 10 min and then chilled on ice. Each sample was reverse-transcribed to cDNA for 90 min at 37°C using a cDNA synthesis kit (Amersham Pharmacia Biotech, Piscataway, NJ, USA). The PCR was performed with the following primer for mouse IGF-I (5’ CCG GAC CAG AGA CCC TTT G3’; 5’ GTT AGT GGG CCT GTG GGC TTG TTG AAG TAA AA3’); GAPDH (5’GGC AAA TTC AAC GGC ACA3’; 5’ GTT AGT GGG GTC TCG CTC CTG3’). Quantitative real-time PCR was performed using a SYBR Green master mix and the detection source was set at 75 kV and 100 μA. Reconstruction was carried out using a modified Feldkamp algorithm using the Sky Scan Nrecon software (Sky Scan, Ltd., Kartuizersweg, Kontich, Belgium). The x-ray source was set at 75 kV and 100 μA. Four hundred projections were acquired over an angle of 180°. The image slices were reconstructed using cone-beam reconstruction software based on the Feldkamp algorithm (Dataviewier; Skyscan, Belgium).

Western blot analysis

The supernatants of homogenized liver tissues were prepared in a sample buffer containing sodium dodecyl sulfate (SDS). The samples were heated at 95°C for 5 min and briefly cooled on ice. Following the centrifugation at 15,000 × g for 5 min, the proteins in the lysates were separated by 10% SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose paper. The nitrocellulose paper was blocked with microplate ELISA reader. A standard curve was run on the plate using recombinant mouse IGF-I in serial dilutions.

Immunohistochemistry

Tissue samples were immediately fixed with 4% formaldehyde and embedded in paraffin. After dewaxing and dehydration, sections were blocked with bovine serum albumin followed by 1 h of incubation with anti–mouse pSTAT5 (Santacruz, CA, USA) at a concentration of 1 μg/ml. The secondary antibody, TRITC-conjugated anti-rabbit IgG (invitrogen), was added to the sections for 30 min. All specimens were examined with a confocal laser-scanning microscope. Sections were coded and randomly analyzed by three blinded observers.

Microcomputed tomography

High-resolution microcomputed tomography (μCT) was used to provide the 2D and 3D information on bone geometry. The mice were sacrificed; femora and tibiae were dissected, cleaned of soft tissue, and fixed in 4% formaldehyde before storage. The source of the open tube type and the minimum focal spot size was 8 μm. Reconstruction was carried out using a modified Feldkamp algorithm using the Sky Scan Nrecon software (Sky Scan, Ltd., Kartuizersweg, Kontich, Belgium). The trabecular bone was extracted by drawing ellipsoid contours with the CT analyzer software. Trabecular bone volume (BV/TV; percentage) and trabecular number (TB.N) of femur epiphysis and proximal tibial metaphysis were calculated by the mean intercept length method. Trabecular thickness (Th.Tb; mm) was calculated according to the method of Hildebrand and Ruegsegger (Ngueguim et al., 2012). 3D parameters were based on analysis of a Marching cubes-type model with a rendered surface. To analyze 3D parameters intuitively, whole bone was scanned, and 600 slices of 8 μm in thickness were placed through the former area. Bone volume/tissue volume (BV/TV), trabecular thickness (Th.Tb), trabecular number (TB.N), connection density (Conn.D), and total porosity were recorded. The thickness of excised bone growth plate was determined using the Sky Scan 1076 as
Bone growth by KH-BaRoKer-SeongJangTang

Fig. 4. Effect of KBS on the phosphorylation of STAT5. (A) Liver tissues of each mouse were homogenized and analysed for pSTAT5 and STAT5 by Western blot analysis using specific anti-pSTAT5 and STAT5 antibodies as described in the experimental procedures. (B) pSTAT5 was analyzed by immunohistochemistry in the tibia. CON, adequate protein diet + DW-administered group; PEM, low protein diet + DW-administered group; KBS, low protein diet + KBS-administered group; Arg, low protein diet + Arg-administered group.

Statistical analysis
Statistical analysis was performed using SPSS software (version 14.0, SPSS Inc, Chicago, IL, USA). All results are expressed as the mean ± SEM. The statistical evaluation of the results was performed by an independent t-test. The results were deemed significant at p < 0.05.

RESULTS

Effect of KBS or Arg or Glu on growth plate in mice
The proximal tibia growth plate length was measured to examine the longitudinal bone growth using a μCT. The lengths of proximal tibia growth plate in the CON and PEM groups were 112.82 ± 4.18 and 86.43 ± 1.47, respectively. The growth plate lengths in the KBS, Arg, and Glu groups were 119.05 ± 6.48, 118.75 ± 4.81, and 87.82 ± 6.38, respectively. KBS and Arg significantly enhanced the longitudinal bone growth, whereas Glu did not (p < 0.05, Fig. 1). Thus, we performed subsequent studies with KBS and Arg except for Glu.

Effect of KBS or Arg on trabecular bone parameters
We performed μCT measurements to evaluate whether KBS or Arg could affect developmental bone growth. The KBS or Arg-administered mice showed an increase in the bone mineral density (BMD) (Fig. 2A). The 3D μCT reconstruction of trabecular bone images, converted into parameters representing trabecular connectivity, revealed an increase in the BV/TV, Tb.Th, Tb.N, and Conn.D, and a fall in the total porosity at tibia (Fig. 2B-F).

Effect of KBS or Arg on the regulation of IGF-I
To examine whether KBS or Arg can elevate IGF-I level in the serum, we measured the level of IGF-I by means of sandwich ELISA method. The serum IGF-I level was significantly up-regulated by KBS or Arg (p < 0.05, Fig. 3A). Then we analyzed the IGF-I mRNA expression in the liver, because majority of plasma IGF-I is biosynthesized in the liver. As expected, hepatic IGF-I mRNA level was found to be significantly elevated in KBS or Arg-administered group (p < 0.05, Fig. 3B).

Effect of KBS or Arg on the phosphorylation of STAT5
To determine whether the longitudinal bone growth by KBS or Arg is mediated by the phosphorylation of STAT5, we performed Western blot analysis and immunohistochemistry. As shown in Fig. 4A, the phosphorylation of STAT5 in the liver decreased by malnutrition. However, the decreased STAT5 phosphorylation was up-regulated by KBS or Arg. Furthermore, STAT5 phosphorylation increased by KBS or Arg in the tibia (Fig. 4B).

DISCUSSION
In this study, we have shown that KBS increases the length of growth plate and improves the bone parameters such as BV/TV, Tb.Th, Tb.N, Conn.D, and total porosity. KBS also elevated in KBS or Arg-administered group (p < 0.05, Fig. 2B-F).

Intraocular toxoplasmosis (Brynskov et al., 2003). Dexamethasone (Dex) is a synthetic glucocorticoid which shows a 20 to 30 times higher potency to evoke anti-inflammatory effects relative to the endogenously produced cortisol (Blaser et al., 2011). It has been reported that the glucocorticoid Dex has an antiinflammatory activity and clinical efficacy in allergic diseases (Puigneró et al., 1995; Wershil et al., 1995). Thus, Dex has been proposed as a medication to treat various diseases such as edema, headaches, acute otitis externa, and ucular toxoplasmosis (Brynskov et al., 2013; Giuliano et al., 2012; Rahman et al., 2007; Soheilian et al., 2011). However, Kugelberg et al. (2005) reported that Dex eye drops inhibit growth in the newborn rabbit. Study by Chrysas et al. (2003) demonstrated that systemic Dex treatment led to a pronounced reduction of the size of the growth plate in tibiae.

Furthermore, Baron et al. (1992) reported that glucocorticoids act locally in the growth plate to inhibit bone growth. It's fortunate that IGF-1 has antiapoptotic actions in lots of tissues and may therefore have a potential to prevent

TANG / www.e-tang.org
glucocorticoid-induced chondrocyte apoptosis. It was reported that IGF-I prevents dexamethasone-induced apoptosis and suppression of chondrocyte proliferation (Chrysis et al., 2005). Our results showed that KBS increases the serum IGF-I level (Fig. 3). Thus, we can presume that KBS could partially recover the growth retardation by Dex through the elevation of IGF-I level.

KBS is consisted of 15 Korean medicinal drugs. Among 15 drugs, Hominis Placenta protected osteoporosis in ovariectomized rats (Chae et al., 2006). Carthami Tinctorii Fructus increased the level of serum IGF-I and lengths of femur and tibia, however, its effect was very small and transient (Lee et al., 2009). Kim et al. (2002) reported that Carthami Tinctorii Fructus partially prevents ovariectomy-induced bone loss. However, the effect of individual drug was less than those of all drugs, prescription KBS.

In conclusion, the present study demonstrated that KBS increases the length of growth plate and improves the bone parameters. KBS also elevated the level of serum IGF-I through the phosphorylation of STAT5. Overall, this study suggests that KBS would be helpful to children who are in retard for their age through the elevation of IGF-I.

ACKNOWLEDGEMENTS

This research was supported by Kyung Hee University in 2013.

CONFLICT OF INTEREST

The authors report no declarations of interest.

REFERENCES

Chrysis D, Ritzen EM, Sävendahl L. Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocyte. J Endocrinol. 2003;176:331-337.

Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1020-G1029.

Weng CY, Kothary PC, Verkade AJ, Reed DM, Del Monte MA.

