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Wnt signaling plays a major role in bone homeostasis and mechanotransduction, but its role and regulatory
mechanism in osteoclast development are not fully understood. Through genome-wide in silico analysis, we
examinedWnt3a-driven regulation of osteoclast development.Mouse bonemarrow-derived cellswere incubated
with RANKL in the presence and absence of Wnt3a. Using microarray mRNA expression data, we conducted a
principal component analysis and predicted transcription factor binding sites (TFBS) that were potentially
involved in the responses to RANKL and Wnt3a. The principal component analysis predicted potential Wnt3a
responsive regulators that would reverse osteoclast development, and a TFBS prediction algorithm indicated
that the AP1 binding site would be linked to Wnt3a-driven suppression. Since c-Fos was upregulated by RANKL
and downregulated by Wnt3a in a dose-dependent manner, we examined its role using RNA interference. The
partial silencing of c-Fos suppressed RANKL-driven osteoclastogenesis by downregulating NFATc1, a master
transcription factor of osteoclast development. Although the involvement of c-Myc was predicted and partial
silencing c-Myc slightly reduced the level of TRAP, c-Myc silencing did not alter the expression of NFATc1.
Collectively, the presented systems-biology approach demonstrates that Wnt3a attenuates RANKL-driven
osteoclastogenesis by blocking c-Fos expression and suggests that mechanotransduction of bone alters the
development of not only osteoblasts but also osteoclasts through Wnt signaling.
Engineering, Indiana University
n Street, Indianapolis, IN 46202

l., Cellular Signalling (2014), http://dx.doi.org/1
© 2014 Published by Elsevier Inc.
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1. Introduction

The WNT gene family includes 19 known secretory signaling
molecules which regulate many aspects of embryonic pattern formation
as well as migration and development of various cells [1,2]. In
the skeletal system, Wnt signaling plays an important role in
mechanotransduction, bone homeostasis, and degenerative disorders
[2–5]. Among 19 known ligands for members of the frizzled family
receptors, Wnt5a activates noncanonical Wnt signaling through a
receptor tyrosine kinase-like orphan receptor and stimulates osteoclas-
togenesis [6]. Wnt10b is required for maintenance of mesenchymal
progenitors, and its deficiency leads to loss of bone mass. Wnt14
enhances endochondral ossification and accelerates chondrocyte
maturation [7,8].

Wnt3a is aWnt ligand known to activate canonicalWnt signaling.
In canonical Wnt signaling, transcriptional activities mediated by
T-cell factor/lymphoid enhancer factor (TCF/LEF) is regulated
73

74

75

76
through the expression of β-catenin. Although the involvement of
Wnt/β-catenin signaling in osteoblast development has been
characterized [2,4,9], the role of Wnt3a in the regulation of bone-
resorbing osteoclasts is not fully understood. While some have
reported that Wnt3a attenuates osteoclast development [10,11],
others have found that it has little effect on osteoclastogenesis [6].
Using both mouse bone marrow cells and RAW264.7 pre-osteoclast
cells, we examined the effects and regulatory mechanism of
Wnt3a-driven regulation of osteoclast development.

The question we addressed was: Does Wnt3a inhibit osteoclast
development by suppressing expression of NFATc1 (nuclear factor of
activated T-cells, cytoplasmic, calcineurin-dependent 1), a master
transcription factor for osteoclastogenesis? If yes, what regulatory
molecule mediates Wnt3a-driven downregulation of NFATc1? In order
to identify potential signaling molecule(s) that regulate osteoclast
development, we conducted genome-wide mRNA expression analysis
using a systems-biology approach. Mouse bone marrow cells were
incubated with RANKL in the presence and absence of Wnt3a, and the
mRNA expression profiles were evaluated in 4 groups of samples
(control, RANKL treatment, and RANKL treatment with 2 different
doses of Wnt3a). Using principal component analysis [12], we first
0.1016/j.cellsig.2014.07.018
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t1:1Table 1
t1:2Real-time PCR primers used in this study.

t1:3Target Forward primer Backward primer

t1:4Atp6vod2 5′-AAGCCTTTGTTTGACGCTGT-3′ 5′-TTCGATGCCTCTGTGAGATG-3′
t1:5cath K 5′-CAGCTTCCCCAAGATGTGAT-

3′
5′-AGCACCAACGAGAGGAGAAA-3′

t1:6c-Fos 5′-AGGCCCAGTGGCTCAGAGA-3′ 5′-CCAGTCTGCTGCATAGAAGGAA-
3′

t1:7c-Myc 5′-CAACGTCTTGGAACGTCAGA-
3′

5′-TCGTCTGCTTGAATGGACAG-3′

t1:8DcStamp 5′-AAAACCCTTGGGCTGTTCTT-3′ 5′-AATCATGGACGACTCCTTGG-3′
t1:9MMP9 5′-GAAGGCAAACCCTGTGTGTT-

3′
5′-AGAGTACTGCTTGCCCAGGA-3′

t1:10NFATc1 5′-GGTGCTGTCTGGCCATAACT-
3′

5′-GCGGAAAGGTGGTATCTCAA-3′

t1:11OSCAR 5′-ACACACACACCTGGCACCTA-
3′

5′-GAGACCATCAAAGGCAGAGC-3′

t1:12TRAP 5′-TCCTGGCTCAAAAAGCAGTT-
3′

5′-ACATAGCCCACACCGTTCTC-3′

t1:13GAPDH 5′-TGCACCACCAACTGCTTAG-3′ 5′-GGATGCAGGGATGATGTTC-3′
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C

extracted a set of genes that would attenuate RANKL-driven osteoclast
development. Using an ant algorithm [13], we then predicted transcrip-
tion factor binding sites (TFBS) that are likely to be involved in the
responses to RANKL and Wnt3a.

The in silico predictions were evaluated using in vitro experiments
with RNA interference. We examined the expression of marker genes
for osteoclast development, including tartrate-resistant acid phosphatase
(TRAP), osteoclast-associated immunoglobulin-like receptor (OSCAR),
matrix metalloproteinase 9 (MMP9), cathepsin K, as well as ATPase
lysosomal V0 subunit D2 (Atp6v0d2) and dendritic cell-specific
transmembrane protein (DcStamp).

2. Materials and methods

2.1. Cell culture

Mouse bonemarrow cells isolated from longbones (femur and tibia)
as well as RAW264.7 mouse pre-osteoclast cells [14] were cultured in
αMEM containing 10% fetal bovine serum and antibiotics (50 units/ml
penicillin and 50 μg/ml streptomycin; Life Technologies, Grand Island,
NY, USA). Cells were maintained at 37 °C and 5% CO2 in a humidified
incubator.

2.2. In vitro osteoclast formation and TRAP (tartrate-resistant acid
phosphatase) staining

Mouse bone marrow cells were plated at 1.2 × 105 and 1.0 × 106

cells into 12-well or 60 mm dishes, respectively, and cultured with
10 ng/ml M-CSF (macrophase colony-stimulating factor; PeproTech,
Rocky Hills, NC, USA) for 3 days. The surface-attached cells were used
as osteoclast precursors. These precursors were cultured with
10 ng/ml M-CSF and 50 ng/ml RANKL in the presence and absence of
Wnt3a. After 2 days of treatment of RANKL, the cells were treated for
TRAP staining using an acid phosphatase leukocyte kit (Sigma). The
number of TRAP-positive cells containing three or more nuclei was
determined. RAW264.7 mouse pre-osteoclast cells were plated at
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Fig. 1. Inhibitory effects of Wnt3a on the development of osteoclasts in bone marrow cells. (
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O1.0 × 105 cells into a 60 mm dish and cultured with 50 ng/ml RANKL

(PeproTech, Rocky Hills, NC, USA) in the presence and absence of
Wnt3a (R&D Systems, Minneapolis, MN, USA).
E
D
 P2.3. Microarray analysis

We employed 4 groups of mouse bone marrow cells (3 samples per
group): control (CN), RANKL (RL), W100 (administration of RANKL and
100 ng/ml Wnt3a), and W200 (administration of RANKL and
200 ng/ml Wnt3a). The concentration of RANKL was 50 ng/ml, and all
sampleswere treatedwith 10 ng/mlM-CSF. Four hours after incubation
with RANKL and Wnt3a, cells were harvested for genome-wide mRNA
expression analysis (Affymetrix Mouse Gene 2.0 ST arrays). Expression
values were normalized using the Robust Multiarray Average (RMA)
algorithm and log2-transformed.
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A) Dose-dependent suppression of TRAP-positive multinucleated osteoclasts by Wnt3a.
es p b 0.01. (C) Wnt3a-driven inhibition of phosphorylated β-catenin (p-β-catenin)
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Fig. 2.Wnt3a-induced reduction of the relativemRNA expression levels of the genes (NFATc1, TRAP, OSCAR, MMP9, and cathepsin K) linked to osteoclastogenesis on days 1 and 2 in bone
marrow cells. Note that CN= control, RL = RANKL, W100 = Wnt3a at 100 ng/ml, and W200 = Wnt3a at 200 ng/ml. (A) Expression levels on day 1. (B) Expression levels on day 2.
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2.4. Principal component analysis

For 25,206 genes in the microarray, principal component analysis
was conducted using the princomp function in the statistical software
tool R (R 3.0.2). Using singular value decomposition, a set of 12 principal
component axes (3 samples for each of 4 groups) was determined.
In the plane of the first and second principal axes (the two major
axes), the four sample groups (CN, RL,W100, andW200)were positioned
using values in the orthonormal gene vector (right singular vector).
Please cite this article as: K. Hamamura, et al., Cellular Signalling (2014), h
We examined whether either or both of the first and second axes
could characterize the primary biological response: induction of osteo-
clastogenesis by RANKL and its suppression by Wnt3a in a dose-
dependent manner. Along the major axis that mimics the primary
biological response, we derived a list of transcription factors [15] that
would be involved in the responses to RANKL and Wnt3a. Further-
more, we used the microarray data to predict potential activators
and inhibitors of osteoclastogenesis by determining the significance
of the differences in gene expression between groups. Genes whose
ttp://dx.doi.org/10.1016/j.cellsig.2014.07.018
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R
E
Cp-values in the three comparisons (RL vs. CN), (W200 vs. RL), and

(W200 vs. W100) were smaller than 0.05 were considered potential
regulators. Genes that were upregulated by RANKL and downregu-
lated by Wnt3a were called “activators,” while genes that were
downregulated by RANKL and upregulated by Wnt3a were called
“inhibitors.”
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2.5. Prediction of transcription factor binding sites (TFBS)

Using an ant algorithm-based search method, potential TFBSs were
predicted for three sets of comparisons (CN vs. RL, RL vs. W100, and RL
vs. W200) [13]. In brief, the ant algorithm is a meta-heuristic optimiza-
tion technique based on the biological behavior of ant colonies.
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Ants initiallywander randomly until they find a food source.When they
do, they return to the colony, depositing pheromones along the way.
Other ants find and follow these pheromones so that shorter routes to
better food sourceswill be reinforced. In our application, these potential
paths consisted of the relative frequency of appearance of TFBSs in the
promoter regions (defined as the region 1000-bp upstream of the
transcription start site) of a set of relevant genes. In a previous version
Please cite this article as: K. Hamamura, et al., Cellular Signalling (2014), h
of this algorithm [13], these TFBSs consisted of all 4-, 5-, or 6-bp combi-
nations of nucleotides. In the current version, TFBSs were obtained
using the positional weight matrices of transcription factors from the
TRANSFAC 7.0 Public 2005 database [16]. Pheromone levels were
determined by calculating the error between the actual gene expression
levels and the predicted expression levels from the contributions of the
chosen TFBSs.
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2.6. Quantitative real-time PCR

Total RNA was extracted using an RNeasy Plus mini kit (Qiagen,
Germantown, MD, USA). Reverse transcription was conducted with
high capacity cDNA reverse transcription kits (Applied Biosystems,
Carlsbad, CA, USA), and quantitative real-time PCR was performed
using ABI 7500 with Power SYBR green PCR master mix kits (Applied
Biosystems). We evaluated mRNA levels of Atp6v0d2 (ATPase, H+

transporting lysosomal v0 subunit d2), cathepsin K, c-Fos, DcStamp
(dendrocyte expressed seven transmembrane protein), MMP9,
NFATc1 (nuclear factor of activated T-cells, cytoplasmic 1), TRAP, and
OSCAR (osteoclast-associated receptor) with the PCR primers listed in
Table 1. GAPDH was used for internal control. The relative mRNA
abundance for the selected genes with respect to the level of GAPDH
mRNA was expressed as a ratio of Streated/Scontrol, where Streated =
mRNA level for the cells treated with RANKL and/or Wnt3a, and Scontrol
= mRNA level for control cells [17].

2.7. Western blot analysis

Cells were lysed in a radioimmunoprecipitation assay (RIPA) buffer
containing protease inhibitors (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) and phosphatase inhibitors (Calbiochem, Billerica, MA, USA).
Isolated proteins were fractionated using 10% SDS gels and electro-
transferred to Immobilon-P membranes (Millipore, Billerica, MA,
USA). The membrane was incubated for 1 h with primary antibodies
followed by 45 min incubation with goat anti-rabbit, anti-rat, or anti-
mouse IgG conjugated with horseradish peroxidase (Cell Signaling,
Danvers, MA, USA). We used antibodies against phosphorylated
β-catenin, c-Myc (Cell Signaling), c-Fos (Santa Cruz), NFATc1 (Santa
Cruz), cathepsin K (Santa Cruz), OSCAR (R&D Systems), DcStamp
(Millipore), TRAP (Abcam, Cambridge, MA, USA), MMP9 (Abcam),
Atp6v0d2 (Aviva Systems Biology, San Diego, CA, USA), and β-actin
(Sigma). Protein levels were assayed using a SuperSignal west femto
maximum sensitivity substrate (Thermo Scientific), and signal intensi-
ties were quantified with a luminescent image analyzer (LAS-3000,
Fuji Film, Tokyo, Japan).

2.8. Knockdown of c-Myc and c-Fos by siRNA

RAW264.7 pre-osteoclast cells were treated with siRNA specific to
c-Myc (5′-CCA GAU CCC UGA AUU GGA A-3′; Life Technology), or
c-Fos (5′-CUA CUU ACA CGU CUU CCU U-3′; Life Technologies). As a
nonspecific control, a negative siRNA (UGU ACU GCU UAC GAU UCG G,
Life Technologies) was used. Cells were transiently transfected
with siRNA for c-Myc, c-Fos or control in Opti-MEM I medium with
Lipofectamine RNAiMAX (Life Technologies). Six hours later, the
medium was replaced by regular culture medium. The efficiency of
silencing was assessed with immunoblotting or quantitative PCR 48 h
after transfection.

2.9. Statistical analysis

Three or four independent experiments were conducted, and data
were expressed as mean ± S.D. For comparison among multiple
samples, ANOVA followed by post hoc tests was conducted. Statistical
significance was evaluated at p b 0.05. The single and double asterisks
and daggers indicate p b 0.05 and p b 0.01. To determine intensities in
immunoblotting, images were scanned with Adobe Photoshop CS2
(Adobe Systems, San Jose, CA, USA) and quantified using Image J.
Fig. 6. Effects of c-Myc siRNA on the selected genes involved in osteoclast development (NFATc1
NFATc1 in response to c-Myc siRNA in the presence of RANKL. (B)mRNA levels of c-Myc, NFATc1
c-Myc siRNA. (C) NFATc1 protein level after c-Myc siRNA treatment in the presence and absenc
treatment in the presence and absence of RANKL for 2 days. (E) Protein levels of MMP9 after c
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3. Results

3.1. Suppression of osteoclast development by Wnt3a

Administration of RANKL to bone marrow cells significantly
increased the number of TRAP-positive multi-nucleated cells (Fig. 1A
& B). In response to 100 or 200 ng/ml of Wnt3a, the number of
TRAP-positive cells was reduced in a dose-dependent manner.
The observed suppression of osteoclast development by Wnt3a was
associated with a decrease in the phosphorylated form of β-catenin
(p-β-catenin) as well as NFATc1 (Fig. 1C).

3.2. Wnt3a-driven reduction in expression of osteoclast specific genes

Consistentwith the reduction of TRAP-positive cells byWnt3a, it also
decreased themRNA levels of the selected genes (NFATc1, TRAP, OSCAR,
cathepsin K, and MMP9) that were known to be involved in osteoclast
development (Fig. 2). The decreases were observed on days 1 and 2
after administration of RANKL in a Wnt3a dose-dependent fashion.

3.3. Principal component analysis

In the plane of the first and second principal axes, the four sample
groups (CN, RL, W100, and W200) were located (Fig. 3A). The groups
were aligned in the order of CN, RL, W100, and W200 along the first
principal axis (PC1), while the order was CN, W200, W100, and RL
along the second principal axis (PC2). The result indicates that the
administration of Wnt3a induced two principal effects: RANKL-like
effects along PC1 and anti-RANKL effects along PC2. Since Wnt3a-
driven suppression of anti-RANKL effects is consistent with attenuation
of osteoclast development, we examined the differentially expressed
transcription factors that most significantly contribute to PC2 (Fig. 3B
& C). The genes in Fig. 3B were assigned with the largest positive
components along PC2, suggesting that they were upregulated by
RANKL and downregulated by Wnt3a. The genes in Fig. 3C were
identified with the largest negative components along PC2, and they
were attenuated by RANKL and stimulated by Wnt3a. The statistical
significance of microarray-derived differences in gene expression was
also considered in Fig. 3B and C. Transcription factors that are signifi-
cantly upregulated by RL vs. CN and downregulated by W200 vs. RL
and W200 vs. W100 were listed in Fig. 3B, while transcription factors
that are significantly downregulated by RL vs. CN and upregulated by
W200 vs. RL and W200 vs. W100 are shown in Fig. 3C.

3.4. Prediction of AP1 as a potential TFBS of Wnt3a-driven regulation

To predict a transcription factor that may mediate the observed
responses to RANKL and Wnt3a, we conducted in silico evaluation of
genome-wide mRNA expression profiles using the ant algorithm.
From the four groups, we applied the ant algorithm to three compari-
sons: RANKL vs. control, W100 vs. RANKL, and W200 vs. RANKL. In all
three comparisons, the algorithm predicted AP1 and Sox17 as potential
TFBSs (Fig. 4). Other TFBS candidates such as AP4, Ets, Rreb1, Stat3, and
USF appeared twice in three comparisons.

3.5. Evaluation of c-Myc

The involvement of c-Myc in osteoclast development is implied in
previous studies, but the reported role is not consistent. Since Myc
was predicted as a potential activator (Fig. 3B), we examined its effects
on RANKL-induced osteoclastogenesis. In primary bone marrow cells,
, TRAP, OSCAR,MMP9, and cathepsin K) in RAW264.7 cells. (A) Protein levels of c-Myc and
, TRAP, OSCAR,MMP9, and cathepsin K in response to non-specific control siRNA (NC) and
e of RANKL for 1 day. (D) Protein levels of TRAP, OSCAR, and cathepsin K after c-Myc siRNA
-Myc siRNA treatment in the presence and absence of RANKL for 3 days.
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the mRNA level of c-Myc was elevated by RANKL, and its elevation was
partially suppressed by Wnt3a in a dose-dependent manner at 4 h
after RANKL/Wnt3a administration (Fig. 5A). The protein level of c-Myc
was also increased by RANKL and reduced by Wnt3a at 200 ng/ml at 5,
10, and 24 h after administration of RANKL and Wnt3a (Fig. 5B–E).
Please cite this article as: K. Hamamura, et al., Cellular Signalling (2014), h
Compared to non-specific control siRNA (NC), partial silencing of
c-Myc in RAW264.7 cells slightly reduced the level of TRAP (Fig. 6A, B
& D). However, themRNA and protein levels of NFATc1were unchanged
by c-Myc siRNA (Fig. 6A–C). Furthermore, treatment with c-Myc siRNA
significantly elevated the levels ofMMP9 and cathepsinK (Fig. 6B, D&E).
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3.6. Wnt3a-driven downregulation of c-Fos

The principal component analysis indicated the potential involve-
ment of c-Fos as an activator of osteoclast development, and the ant al-
gorithm predicted AP1 as a possible cause of differential mRNA
expression profiles in the comparisons of RANKL vs. control, W100 vs.
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RANKL, and W200 vs. RANKL. Using quantitative PCR, we confirmed
that the mRNA level of c-Fos was elevated at 4 h, day 1, and day 2,
and this elevation was decreased by 200 ng/ml of Wnt3a (Fig. 7A).
Regarding the protein level of c-Fos, RANKL-driven elevation was
reduced by 200 ng/ml of Wnt3a on day 1 (Fig. 7B & C). At 2 to 24-h
time points, RANKL elevated c-Fos at 10, and 24 h as well as p-β-catenin
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and NFATc1 at 24 h (Fig. 7D & E). These elevations were significantly
suppressed by 200 ng/ml of Wnt3a.

3.7. Regulation of osteoclast-related genes by c-Fos RNA interference

In response to RANKL, RAW264.7 cells treated with c-Fos siRNA
resulted in a decrease in the protein level of NFATc1 (Fig. 8A). In the
presence of RANKL, the c-Fos treated cells showed a statistically signifi-
cant decrease in the mRNA and protein levels of NFATc1, TRAP, and
cathepsin K (Fig. 8B–D). The mRNA and protein levels of OSCAR and
MMP9 were also decreased, but the decreases were not statistically
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significant (Fig. 8B, D, & E). In RANKL-untreated cells, however, partial
silencing of c-Fos had little effect on the mRNA levels of these selected
genes.

3.8. Downregulation of Atp6v0d2 and DcStamp by Wnt3a

The mRNA levels of the two genes involved in membrane fusion
for osteoclast's multi-nucleation, Atp6v0d2 and DcStamp, were
elevated by RANKL, and this elevation was reduced by Wnt3a
(Fig. 9A & B). In response to c-Fos siRNA treatment, RANKL-driven
upregulation of the mRNA and protein levels of Atp6v0d2 was
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significantly decreased, but the level of DcStamp mRNA was
unaffected (Fig. 9C & D).

4. Discussion

Wnt3a is known to play a critical role in the skeletal system, includ-
ing in inflammatory processes, bone formation, and bone resorption
[10,11,18,19]. In particular, Wnt3a is an important responder to
mechanical stimulation by activating canonical Wnt signaling [20,21].
Although the mechanism of activation of bone-forming osteoblasts
through interactions with Lrp5/Lrp6 receptor has been investigated
[22], the mechanism of inhibition of bone-resorbing osteoclasts has
not beenwell understood. Previous studies presented conflicting results
on the role of Wnt3a in osteoclastogenesis [6,10,11]. In this study, we
employed a systems-biology approach with in silico predictions using
genome-wide mRNA expression profiles and in vitro evaluations using
RNA interference and investigated the effects of Wnt3a as well as a
regulatory mechanism of Wnt3a's action.

The present study shows that RANKL-drivenosteoclast development
is significantly attenuated byWnt3a,which acts as a secretory ligand for
canonical Wnt signaling. Mouse bone marrow cells elevated the
phosphorylation level of β-catenin in response to RANKL, while the
administration ofWnt3a suppressed its elevation. NFATc1 is considered
a master transcription factor for osteoclast development [23], and its
elevation by RANKL was also reduced by Wnt3a. Similarly, RANKL-
inducible osteoclast marker genes such as TRAP, OSCAR, and cathepsin
K were all reduced by Wnt3a. In silico data interpretation using
principal component analysis and the ant algorithm predicted potential
signaling mechanisms for transcriptional regulation. Herein, we
specifically evaluated the role of c-Myc and c-Fos in the responses
to RANKL and Wnt3a using RNA interference. The results support
the notion that activation of osteoclast development by RANKL is
suppressed by Wnt3a in a c-Fos-mediated pathway.

Using singular value decomposition, we applied principal compo-
nent analysis for the identification of a set of transcription factors that
would potentially be involved in the responses to RANKL and Wnt3a.
We first composed an mRNA expression matrix with 12 columns
(triplicate samples for each of the four groups). Among 12 eigenvalues,
the second principal component corresponding to the second largest
eigenvalue aligned 4 groups in the order of control, W200, W100, and
RANKL. This order is consistent with the expected role of Wnt3a as a
suppressor of RANKL-driven induction of osteoclastogenesis. Since the
first primary axis gave the order of control, RANKL, W100, and W200,
the role of Wnt3a is not simply anti-RANKL. The second principal
components of the right singular matrix weigh contributions of all
transcription factors to the favorable ordering of 4 groups. As a comple-
mentary approach to principal component analysis, we employed the
ant algorithm and predicted TFBSs for three sets of comparisons
(control vs. RANKL, RANKL vs. W100, and RANKL vs. W200). The
algorithm is a heuristic search engine using an artificial pheromone as
a measure of fitness of TFBSs.

Any result from in silico analysis requires experimental evaluation.
In this study, we focused on evaluating potential roles of c-Myc and
c-Fos in osteoclast development using RNA interference. The role of
c-Myc in osteoclastogenesis is controversial. It is reported that c-Myc
promotes osteoclast differentiation [24,25], and inhibition of c-Myc
using dominant negative c-Myc or a pharmacological inhibitor blocked
its differentiation and function. It is also reported, however, that
transcription of TRAP is negatively regulated by c-Myc [26]. In the
current study, we employed partial silencing of c-Myc and showed
that c-Myc siRNA slightly suppressed RANKL-induced TRAP expression
but it oppositely upregulated expression of MMP9 and cathepsin K.
Collectively, although it is reported that c-Myc can be regulated by the
binding ofβ-catenin to TCF/LEF [27], c-Myc is not considered as a critical
inhibitory factor in response to RANKL and Wnt3a, and its role may
depend on developmental stages or cellular microenvironment.
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Fos proteins belong to the AP1 family, together with Jun and ATF
proteins [28]. Like other Fos proteins such as FosB, Fra1, and Fra2,
c-Fos plays a major role in osteoclastogenesis [29,30]. However, for
the first time, a direct linkage has been established in which c-Fos
mediates Wnt3a-driven suppression of osteoclastogenesis in response
to RANKL. Furthermore, the results herein clearly show dose-
dependent, target-selective suppressive activities of c-Fos. Although
Wnt3a at 100 ng/ml significantly attenuated the number of TRAP-
positive multinucleated osteoclasts, it hardly changed the mRNA and
protein levels of c-Fos. Treatmentwith siRNA specific to c-Fos downreg-
ulated most of the selected genes involved in osteoclast development,
but it did not affect the expression of DcStamp. As shown in the
heatmap of transcription factors in Fig. 3, it is likely that other transcrip-
tion factors are also involved in the responses to Wnt3a.

Besides c-Fos, other transcription factors are likely to be involved in
Wnt3a-driven attenuation of osteoclast development. Those factors
might be activators for osteoclastogenesis such as c-Fos, as well as
inhibitors. In analysis of TFBS with the ant algorithm, Sox17 is predicted
as a potential regulator of the responses to RANKL and Wnt3a. It is
reported that Sox17 modulates Wnt3a/β-catenin-mediated transcrip-
tional activities of LEF [31]. In analysis of transcription factors with
principal component analysis, potential inhibitors include Foxn3 and
Foxa2, which are forkhead box proteins. A variety of forkhead box
proteins are involved in stress responses as well as cell metabolism
[32], and it is to be examined whether there would be any linkage of
Wnt3a/β-catenin to stress responses or cell metabolism. Along the
first principal axis, transcription factors such as Stat1 and Pparγ were
predicted. Although their involvement in osteoclast development is
reported [33,34], they are not likely to be involved in the response to
Wnt3a.

In summary, this study demonstrates that Wnt3a suppresses
RANKL-driven osteoclastogenesis in a dose-dependent manner, and its
action is in part mediated by c-Fos. This action is along the second
primary axis in principal component analysis, and the first primary
axis conversely promotes the response to RANKL. We think that the
systems-biology approach taken in this study can facilitate the interpre-
tation of genome-wide expression profiles and identification of key
regulatory players in complex biological processes such as osteoclast
development.
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