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process within the bone. Load-induced BFF can be altered by factors such as intramedullary pressure (ImP) and/
or bone matrix strain, mediating bone adaptation. Previous studies have shown that BFF induced by ImP alone,
with minimum bone strain, can initiate bone remodeling. However, identifying induced ImP dynamics and
bone strain factor in vivo using a non-invasive method still remains challenging. To apply ImP as a means for al-
teration of BFF, it was hypothesized that non-invasive dynamic hydraulic stimulation (DHS) can induce local ImP
with minimal bone strain to potentially elicit osteogenic adaptive responses via bone-muscle coupling. The goal
of this study was to evaluate the immediate effects on local and distant ImP and strain in response to a range of
loading frequencies using DHS. Simultaneous femoral and tibial ImP and bone strain values were measured in
three 15-month-old female Sprague Dawley rats during DHS loading on the tibia with frequencies of 1 Hz to
10 Hz. DHS showed noticeable effects on ImP induction in the stimulated tibia in a nonlinear fashion in response
to DHS over the range of loading frequencies, where they peaked at 2 Hz. DHS at various loading frequencies gen-
erated minimal bone strain in the tibiae. Maximal bone strain measured at all loading frequencies was less than
8 pe. No detectable induction of ImP or bone strain was observed in the femur. This study suggested that oscilla-
tory DHS may regulate the local fluid dynamics with minimal mechanical strain in the bone, which serves criti-
cally in bone adaptation. These results clearly implied DHS's potential as an effective, non-invasive intervention
for osteopenia and osteoporosis treatments.
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Introduction

Aging or functional disuse of the bone can subsequently create a
number of physiological or pathophysiological changes in the skeleton
of the affected subjects (e.g. elderly, long-term bed-rest patients, and as-
tronauts who participate in long-duration spaceflight missions), leading
to conditions such as osteopenia [1]. Studies of mechanobiology and
novel modalities of mechanical loading have demonstrated their
abilities in regulating bone strength [2-10]. However, the underlying
mechanotransductive mechanisms, namely, how mechanical signals
are delivered to bone cells and how the bone cells respond to such sig-
nals, remain unclear.
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As a potent regulator in bone adaptation, bone fluid flow (BFF) with
altered velocity or pressure acts as a communication media between an
external load and the bone cells, which then regulate bone remodeling
[11-16]. In converse, discontinuous BFF can initiate bone turnover and
result in osteopenia [17-20]. Physical signals such as intramedullary
fluid pressure (ImP) have been suggested to initiate BFF and to influence
the osteogenic signals within the bone [18]. A few studies using surgical
methods on in vivo animal models have shown that BFF can be altered
by ImP without bone deformation, and that ImP alone is sufficient to in-
duce potent adaptive responses in the bone. Qin et al applied a direct
alteration of ImP to an isolated turkey ulna without deforming the
bone tissue and found increased bone formation in response to the ap-
plied pressure [18]. Similarly, a more recent study introduced a novel
microfluidic system for generating dynamic ImP and BFF within the fe-
murs of alert mice to induce osteogenic responses [21].

Therefore, ImP-induced BFF provides a great potential in developing
novel mechanical stimuli as countermeasures for disuse bone loss. Pre-
vious in vivo study using oscillatory electrical muscle stimulation (MS)
in a hindlimb suspension (HLS) functional disuse rat model has demon-
strated that oscillatory MS-induced muscle contraction can generate
ImP and bone strain to mitigate disuse osteopenia [9,22,23]. A potential
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mechanism of the interrelationship between vasculature adaptation
and applied ImP alteration has been suggested in a later study [24]. In-
duced ImP possibly triggers the transformation of the bone nutrient vas-
culature, leading to the ultimate alteration in blood supply to the bone.
However, to non-invasively isolate the ImP factor from the bone strain
factor in an in vivo setting still remains challenging. Furthermore, in
order to establish the translational potential of ImP, a novel and non-
invasive method that directly couples an external load and internal
BFF would be an attractive intervention. To reach this goal, our group
has recently developed a novel, non-invasive dynamic hydraulic stimu-
lation (DHS). Its promising effects on mitigating disuse bone loss have
been shown via a 4-week rat HLS study followed by uCT and
histomorphometry analyses [25]. The results indicated a great potential
of DHS to become a novel countermeasure for clinical osteoporosis/
osteopenia treatments.

Identifying stimulation parameters within an optimal loading regi-
men, e.g. frequency, is important to maximize the effectiveness of the
stimulation and to generate beneficial adaptive responses in the bone.
As an important determinant of bone adaptation to mechanical loading,
loading frequency has been shown with a positive correlation to the im-
proved bone quality in various studies [26-28]. Interestingly, effective
loading frequencies seem to differ among various loading modalities
[8,26,27,29]. Whole-body vibrations are known to be more effective at
high frequencies (>30 Hz). On the other hand, an ulna axial loading
study in mice reported a higher effect at lower loading frequencies
(5 Hz and 10 Hz) as opposed to higher frequencies (20 Hz or 30 Hz)
[29]. Related to ImP and BFF loading theory, relatively lower frequencies
(5 Hzand 10 Hz) were reported to be more effective in bone adaptation
in the femur [21] and tibia [8], respectively.

To test the hypothesis that non-invasive DHS can induce local ImP
with minimal strain to potentially elicit osteogenic adaptive responses,
the objective of this study was to evaluate the immediate effects on fem-
oral and tibial ImP and bone strain induced by DHS over the tibia within
a broad range of loading frequencies.

Materials and methods
Animals

All surgical and experimental procedures were approved by the In-
stitutional Animal Care and Use Committee (IACUC) at Stony Brook Uni-
versity. Surgical experiments were performed on three 15-month-old
female Sprague Dawley virgin rats (Charles River, MA; body mass
426 + 36 g) to measure the ImP and bone strain simultaneously during
DHS loading.

ImP measurements

Each animal was anesthetized through standard isoflurane inhala-
tion. An approximately 1 cm incision was made at the anterior knee re-
gion of the animal's right leg to expose the distal femur and proximal
tibia. From the distal end of the femur and the proximal end of the
tibia, a 1 mm hole was carefully drilled into each of the right femoral
and tibial marrow cavities, respectively. Guided by a 16-gauge catheter,
a micro-cardiovascular pressure transducer (Millar Instruments, SPR-
524, Houston, TX) was inserted into each of the femoral and tibial mar-
row cavities (Fig. 1). The catheter and the pressure transducer appara-
tus were sealed tightly within the drilled holes.

Bone strain measurements

Similar to the above surgical procedure, a 2 cm incision was made at
the anterior side of the right tibia and the lateral side of the right femur.
A linear single element strain gauge (120 Q, factor 2.06, Kenkyojo Co.,
Tokyo) was firmly attached to the flat surface of each of the same tibia
and femur within the mid-diaphyseal regions (Fig. 1). The exposed

Fig. 1. Surgical experiment setup. For the ImP measurements, a micro-cardiovascular pres-
sure transducer was inserted into each of the marrow cavities of both tibia and femur. For
bone strain measurements, a single element strain gauge was firmly attached to the flat
surface of each of the same tibia and femur at the mid-diaphyseal region. Simultaneous
ImP and bone strain were then measured in both tibia and femur during DHS on the tibia.

muscles underwent minimal disruption, and the open skin was sutured
before applying DHS.

DHS loading

DHS was achieved through a custom-made inflatable cuff placed
around the right tibia, with the similar setup in our recently published
study [25]. Briefly, the inflation and deflation of the cuff were driven
by a syringe pump with the loading magnitudes and frequencies deliv-
ered by a programmable waveform/signal generator (HP33120A,
Hewlett-Packard, Palo Alto, CA). A pressure sensor was included to
monitor the stimulation amplitude throughout the entire stimulation
process. The pressure stimulation was achieved by 40 mmHg static
pressure + the peak-to-peak dynamic pressures given by the function
generator that was set at 1.5 V constant voltage. To start the experi-
ment, DHS was applied to the operated tibia by placing the stimulation
cuff around the mid-tibia region and loaded at frequencies of
0.5 Hz, 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, 3 Hz, 3.5 Hz, 4 Hz, 5 Hz, 6 Hz, 7 Hz,
8 Hz, 9 Hz, and 10 Hz. Measurements of ImP and bone strain of the
stimulated right tibia and un-stimulated right femur were recorded
simultaneously using a strain gauge amplifier (SCXI-1000, National In-
struments, Austin, TX). For each animal, the entire frequency spectrum
was repeated for at least three times.

Fast Fourier Transform (FFT) analysis

Each run of data recording was put through a Fast Fourier Transform
using MatLab. The random noise was removed by zeroing any values in
each power spectrum that were below a threshold. This threshold was
defined as the middle point between the lowest peak of the signal and
the average of the random noise. Once the noise was removed, each fre-
quency step was analyzed individually. Each step was divided into
twenty intervals. The difference between the maximum and minimum
values was calculated and averaged over all intervals for that particular
frequency step. This was taken as the peak-to-peak value for the corre-
sponding loading frequency (Fig. 2).



M. Hu et al. / Bone 57 (2013) 137-141 139

o o o
= =3 =)

T T
L L L

SPECTRAL AMPLITUDE (no units)

o
5
r
L

0 2 4 8 10 12

6
FREQUENCY (Hz)

Fig. 2. Representative traces of ImP measurements from DHS loading at various frequen-
cies over time.

Statistical analysis

The values of ImP measurements were reported as mean + SD. The
effects of treatments were evaluated using a Kruskal-Wallis one-way
ANOVA on ranks and Dunn's pairwise comparison post-hoc test using
GraphPad Prism 3.0 Software (GraphPad Software InC,, La Jolla, CA).
Power analysis was performed using the Statistical Power Calculator
of Researcher's Toolkit provided by DSS Research (Fort worth, TX and
Arlington, VA) to calculate the statistical power of each ImP measure-
ment value at each frequency point compared to the baseline value
with 95% confidence interval.

Results
Tibial and femoral ImP induced by DHS

Approximately 1 mmHg tibial ImP and 5 mmHg femoral ImP were
generated by normal heart beat within the marrow cavities. Oscillatory
DHS over the tibial region of each rat's right hindlimb, loaded at various
frequencies, generated additional fluid pressures in the tibial marrow
cavity but not in the femoral marrow cavity. Tibial ImP generated by
DHS at each frequency was plotted and shown in Fig. 3. The observed
responding trend of the ImP (peak-to-peak) values against frequency
was induced in a nonlinear fashion during DHS loading. The induced
ImP values (peak-to-peak) were in the order of 1.98 +1.57 mmHg
at 0.5 Hz (p > 0.05), 9.20 + 4.58 mmHg at 1 Hz (p > 0.05), 13.98 +
323 mmHg at 1.5Hz (p<0.01), 1448 £3.10 mmHg at 2 Hz
(p<0.01), 1399 4+ 258 mmHg at 25Hz (p<0.01), 13.18 +
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Fig. 3. Graph shows mean 4 SD values of the ImP measurements. ImP in the tibia increased
significantly with DHS loading frequency at 1.5 Hz, 2 Hz, 2.5 Hz, 3 Hz, 3.5 Hz, 4 Hz, and
5 Hz. In the loading frequency spectrum from 0.5 Hz to 10 Hz, a maximum ImP of
14.48 + 3.10 mmHg was observed at 2 Hz, which was around 7 folds higher than at
0.5 Hz (1.98 + 1.57 mmHg). *p < 0.01 vs. baseline ImP; °p < 0.05 vs. baseline ImP.

2,07 mmHg at 3Hz (p<0.01), 1252 4+ 2.08 mmHg at 3.5 Hz
(p<001), 1209 £ 2.18 mmHg at 4Hz (p<0.05), 1152+
248 mmHg at 5Hz (p<0.05), 1056 + 2.67 mmHg at 6 Hz

(p > 0.05),9.59 + 3.21 mmHg at 7 Hz (p > 0.05), 8.55 + 2.97 mmHg
at 8 Hz (p > 0.05), 7.76 4+ 3.70 mmHg at 9 Hz (p > 0.05), and 7.28 +
4.85 mmHg at 10 Hz (p > 0.05). The ImP reached the peak at 2 Hz.

Statistical power analysis

The power analysis showed sufficient statistical power of each ImP
measurement value compared to the baseline value with 95% confi-
dence interval in the following frequencies: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4,0, 5.0, 6.0,7.0, 8.0, 9.0, and 10.0 Hz. The strong statistical power indi-
cates that our current sample size is sufficient to reject the null hypoth-
esis when false. The effect of DHS on ImP induction can well be
determined over the frequency range of 1 Hz to 10 Hz.

Effect of DHS on tibial and femoral bone strain

Oscillatory DHS over the tibial region of the rats' hindlimbs at vari-
ous loading frequencies generated minimal bone strain within the
tibia. Maximal bone strain measured at all loading frequencies was
smaller than 8 pe. Similar to the femoral ImP measurements, no detect-
able induction of bone strain was observed in the un-stimulated femur.

Discussion

For the first time, this study demonstrated a non-invasive method
that can be applied to an in vivo rodent model to isolate ImP and bone
deformation, which are the two key determinants for BFF. The promis-
ing results from this study indicated that DHS can generate local fluid
pressure in bone with simultaneous minimal bone strain. DHS over
the rat tibia induced a peak of tibial ImP at 2 Hz. While the observed tib-
ial bone strain over the range of loading frequencies was smaller than
8 g, relatively high ImP values were observed as a function of loading
frequency. Tibial ImP measurements between the loaded 1.5 Hz and
5 Hz showed significant increases compared to the baseline level.
These results suggested that DHS can potentially produce high fluid
pressure gradients within the local marrow cavity. As a key determinant
of BFF, loading generated fluid pressure in bone may have strong poten-
tials in attenuating disuse bone loss, if loaded at proper frequencies.

The results from this study coincided with one of our recently pub-
lished in vivo experiment, in which DHS loading at frequency of 2 Hz
was shown to have mitigation effect on disuse trabecular bone loss in
a rat HLS functional disuse model [25]. For example, trabecular bone
volume fraction in the stimulated tibia was increased by 83% when a
DHS protocol at 2 Hz was applied for four weeks in conjunction with
HLS. The high surface area of the trabecular network allows it to expose
to the rapid change in fluid pressure, leading to the pronounced effects
of DHS observed in the trabecular bone. The DHS stimulation cuff was
designed as dynamic circular compressions around the diaphysis region
of the loaded bone, which does not provide direct physical contact over
the metaphyseal region. However, the anabolic/anti-catabolic effects of
DHS on disuse trabecular bone strongly support the ImP-induced BFF
mechanism. According to the beneficial role of mechanotransduction
in triggering bone remodeling [30,31], strong evidence has suggested
that interstitial fluid flow in the bone can be altered by external muscu-
lar activities through various mechanisms [32,33]. Based on the muscle
pump theory, it is thought that muscle contraction compresses the
blood vessels in the muscle, which generates an arteriovenous pressure
gradient that further increases the hydraulic pressure in the skeletal nu-
trient vessels and amplifies the capillary filtration in bone [19,20,34].
Increased vessel pressure can directly increase the ImP that further
drives BFF [35]. Direct circular compressions provided by DHS over the
surrounding muscles have demonstrated its ability on ImP inductions
and potential in attenuating disused bone loss [25].
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The observed ImP inductions have indicated a nonlinear response in
the DHS loading spectrum between 0.5 Hz and 10 Hz, in which they
peaked at 2 Hz. The nonlinear relationship between the DHS loading
frequencies and the corresponding ImP inductions is presented in
Fig. 3. The frequencies and ImP values are positively correlated, how-
ever, it is highly frequency-dependent and they do not correlate into
a linear relationship. This response to the loading frequency range
is different from our previous observation using oscillatory muscle
stimulation (MS), in which oscillatory MS induced maximal ImP at
20 Hz. Oscillatory MS was achieved via two disposable needle-sized
electrodes inserted into the quadriceps of the stimulated rats. The
electrodes were then connected to the waveform generator with 2 V
supplies to induce muscle contraction [9,22]. DHS provides an external
stimulus that increases dynamic compressions on the surrounding mus-
cles over the tibia, as opposed to direct muscle stimulation provided by
oscillatory MS. Based on the characteristics of the tissue material, e.g. the
viscoelastic nature of the surrounding muscle tissue, the loads at high
frequencies could be quickly damped. Due to the different physical ori-
entations of how oscillatory MS and DHS contact the loaded tissue, as
well as the different material densities and viscosities within hard and
soft tissues, maximal DHS-induced ImP may result at relatively lower
frequency compared to MS. This also suggests that direct hydraulic cou-
pling may influence bone adaptation in a more physiological frequency
range, where the normal heart rate of the rat is within the average range
of 360 times per minute [39]. Furthermore, the mechanotransductive
sequence through different connective tissues during DHS may attenu-
ate the high frequency response in bone, e.g. via the connective path-
way from the contacted muscle vs. tendon to bone, resulting in peak
ImP at a different frequency. To further reveal this complex mechanism,
future investigation may need to focus on muscle kinetics and BFF
generation.

Previous studies from our group have shown that BFF can be altered
by ImP with minimal bone strain, and that ImP alone is sufficient to in-
duce bone adaptation. A loss of cortical bone by 5.7% was resulted in a
disuse avian ulna [18]. An increase in cortical bone mass by 18% was
shown with a direct fluid loading into the ulna at 20 Hz for 4 weeks.
Moreover, the study also observed a strong correlation between the
transcortical fluid pressure gradient and total bone formation. Similarly,
generation of dynamic ImP and BFF within the femurs of HLS mice using
a novel microfluidic system significantly reduced the disuse bone mass
loss in both trabecular bone and cortical bone [21]. Our present study
demonstrated DHS's ability in ImP induction, which strongly suggests
its potential in attenuating disuse bone loss. This hypothesis is further
supported by the mitigation effect of DHS at 2 Hz, indicated in our re-
cent publication [25]. The response of bone cells to dynamic fluid
flow mechanical stimulation was further demonstrated by a longitudi-
nal in vivo study, which indicated that the MSC population was positive-
ly influenced by the DHS-derived mechanical signals. Changes of
MSC number in response to DHS bias their differentiation towards
osteoblastogenesis, leading to bone formation even under disuse condi-
tions [36]. Further study on the underlying mechanism in response to
mechanical signals, e.g. mechanobiological modulation of cytoskeleton
and calcium influx into osteoblastic cells [37], can provide insights for
the future developments of novel and effective osteoporosis treatments.
Interesting, DHS on the tibia only affected the tibial ImP but not the fem-
oral ImP, indicating the local effect of DHS. This is suggesting that the
function of DHS may be site specific. More detailed in vivo experiments
are needed to validate this observation. Moreover, while increased bone
fluid pressure and BFF regulation are strongly correlated, our current re-
sults of DHS-driven ImP induction suggest a possible mechanism that
the induced ImP may subsequently enhance BFF. Future studies may ex-
tend our current experimental focus and incorporate further experi-
ments of tracer transport determinations to verify this hypothesized
mechanism [31,38].

In summary, oscillatory DHS can generate local ImP as a function of
stimulation frequency with minimal strain, where the induced dynamic

ImP may subsequently enhance BFF. DHS, if applied at an optimal fre-
quency, has strong potential in preventing and attenuating bone loss
under disuse osteopenia condition. Results from this study provide evi-
dence that may facilitate the development of a biomechanical based in-
tervention for osteoporosis prevention and treatment, which provide
great insights for future clinical applications.
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