The pisiform growth plate is lost in humans and supports a role for Hox in growth plate formation

Kelsey M. Kjosness,1 Jasmine E. Hines,1 C. Owen Lovejoy2 and Philip L. Reno1

1Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
2Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA

Abstract

The human pisiform is a small, nodular, although functionally significant, bone of the wrist. In most other mammals, including apes and Australopithecus afarensis, pisiforms are elongate. An underappreciated fact is that the typical mammalian pisiform forms from two ossification centers. We hypothesize that: (i) the presence of a secondary ossification center in mammalian pisiforms indicates the existence of a growth plate; and (ii) human pisiform reduction results from growth plate loss. To address these hypotheses, we surveyed African ape pisiform ossification and confirmed the presence of a late-forming secondary ossification center in chimpanzees and gorillas. Identification of the initial ossification center occurs substantially earlier in apes relative to humans, raising questions concerning the homology of the human pisiform and the two mammalian ossification centers. Second, we conducted histological and immunohistochemical analyses of pisiform ossification in mice. We confirm the presence of two ossification centers separated by organized columnar and hypertrophic chondrocyte zones. Flattened chondrocytes were highly mitotic, indicating the presence of a growth plate. Hox genes have been proposed to play a fundamental role in growth plate patterning. The existence of a pisiform growth plate presents an interesting test case for the association between Hox expression and growth plate formation, and could explain the severe effects on the pisiform observed in Hoxa11 and Hoxd11 knockout mice. Consistent with this hypothesis, we show that Hoxd11 is expressed adjacent to the pisiform in late-stage embryonic mouse limbs supporting a role for Hox genes in growth plate specification. This raises questions concerning the mechanisms regulating Hox expression in the developing carpus.

Key words: African ape; epiphysis; homology; Hoxd11; human evolution; ossification; wrist.

Introduction

The human wrist consists of eight short bones, so named for their lack of longitudinal growth due to the absence of a growth plate. Much of the growth in these bones occurs by subchondral and subperiosteal deposition (Dainton & Macho, 1999). In humans, the pisiform is a short pea-shaped spheroid that articulates solely with the triquetral (Fig. 1a). It provides a modest palmar projection and serves as the distal attachment site for the tendon of the powerful flexor carpi ulnaris (FCU) muscle (its tendon continues distally to insert into the hamate and base of metacarpal 5 via the pisohamate and pisometacarpal ligaments). These features have led to the common misconception that the pisiform is essentially a sesamoid and may not have a homolog in primitive carpals (Keibel & Mall, 1910; Haines & Hughes, 1944; Harris, 1944; Standring, 2005). However, the pisiform’s small size belies its functional significance as the only carpal with an insertion for an extrinsic flexor of the hand (FCU), as well as serving as the attachment site for the abductor digiti minimi (ADM) muscle and the flexor and extensor retinacula. Additionally, the pisiform defines the medial boundaries of the carpal tunnel and ulnar canal. Compared with humans, the pisiform of most other mammals, including primates, is substantially enlarged and elongated (Fig. 1). A long, rod-shaped pisiform has been attributed to Australopithecus afarensis (A.L. 333-91; Fig. 1b; Bush et al. 1982). Thus, a shortened pisiform is a derived trait in Homo and represents one of the most dramatic anatomical differences between the human and chimpanzee wrist. Currently, the functional consequences of pisiform reduction are poorly understood.

Discerning the evolutionary and mechanical relevance of pisiform reduction relies on an understanding of the genetic and developmental processes that result in
The potential existence of a growth plate has particular significance for hypotheses concerning the patterning and formation of the wrist. Hox gene expression levels regulate both the pattern of a mesenchymal condensation and its subsequent growth (Morgan & Tabin, 1994; Davis et al. 1995; Boulet & Capecchi, 2002, 2004; Woltering & Duboule, 2010). In particular, Hox genes have been implicated in the specification and regulation of growth plates (Boulet & Capecchi, 2004). Posterior Hoxa and Hoxd genes are expressed in two distinct phases in the developing tetrapod limb; the early phase corresponds to expression in the stylopod and zeugopod, and the later phase the autopod (Zakkany & Duboule, 2007). The wrist, or mesopodium, forms at the junction of the zeugopod and autopod. This region corresponds to a gap in Hoxd expression (Nelson et al. 1996; Reno et al. 2008). Woltering & Duboule (2010) propose that this ‘no Hoxd zone’ is responsible for the lack of growth plates in the carpals. Therefore, we hypothesize that if the secondary center of the pisiform simply represents a separate, late-fusing carpal element, then this region will be devoid of late-stage Hoxd expression similar to the rest of the mesopodium. Alternatively, if the pisiform does form an active growth plate we hypothesize that targeted later-stage Hoxd expression should be detectable adjacent to the developing pisiform.

Materials and methods

African ape comparative analysis

To confirm the presence of a secondary center in apes and to determine the relative timing of ossification compared with that in humans, we surveyed pisiform ossification in juvenile chimpanzees (Pan troglodytes, n = 18) and gorillas (Gorilla gorilla, n = 27) housed at the Cleveland Museum of Natural History, Ohio, USA. Specimens were either assessed visually when cleaned and disarticulated, or by X-ray when ligamentous. Pisiforms were staged on the following ordinal scale: no primary ossification center; primary ossification center only; unfused secondary center; partial fusion of two centers; and complete fusion of the pisiform. To assess relative age, specimens were scaled based on dental eruption and basilar suture closure: deciduous dentition only; first molar (M1) erupting; M2 erupting; M3 erupting; and patent basilar suture/canine erupting (McCollum, 2008). Despite variation in pisiform orientation across taxa, we will refer to the end that articulates with the triquetral as dorsal and the opposite end as palmar throughout this manuscript.

Mouse whole-mount and histological analysis

FVB/NJ mice were fed solid food and water ad libitum, and exposed to a 12 h day/night cycle. Animals were killed using CO2 following protocols approved by the Penn State IACUC. Gross morphology was assessed in skeletons cleared and stained for alcian blue/alizarin red following standard protocols. Histological analysis was conducted on C57Bl/6 forepaws collected for a previous study (Reno et al. 2006, 2007). Sections were stained with Safranin O/Fast Green to provide clear contrast between cells, cartilage matrix and bone as previously described (Reno et al. 2006). We assessed cellular proliferation via immunohistochemistry for proliferative cell nuclear antigen (PCNA) using a rabbit polyclonal antibody (sc-7907, Santa Cruz Biotechnology). Nuclear staining for this protein identifies cells

© 2014 Anatomical Society
in the S-phase of the cell cycle (Yu et al. 1992). For younger specimens (< postnatal day P10), procedures were as previously described (Reno et al. 2006). However, at later time points (> P10), enzymatic trypsin unmasking replaced chemical unmasking with sodium citrate, resulting in better tissue and cellular integrity. Negative antibody controls are provided for both protocols.

Hoxa11 and Hoxd11 mutants and in situ hybridization

Two Hoxa11+/del;Hoxd11+/− and two Hoxa11+/del;Hoxd11+/− adult (8 weeks old) mice were provided as a kind gift from Anne Boulet and Mario Capecchi (HHMI, University of Utah, USA). The Hoxd11 mutant line has been previously described (Davis & Capecchi, 1994; Boulet & Capecchi, 2002, 2004). The Hoxa11-del allele was derived from a novel conditional allele (K. Wong and M. Capecchi, unpublished). The null genotype (del) was attained in the limbs by breeding to Hoxb1-IRES-Cre (Arenkiel et al. 2003). Skeletons were cleared and stained as described above. For simplicity, we refer to the wild-type Hoxa11 and Hoxd11 alleles as ‘A’ and ‘D’, and refer to the mutant allele as ‘a’ and ‘d’.

In situ hybridization was conducted on mouse embryos dissected from the uterine horn of pregnant FVB/NJ females at embryonic day (E) 13.5 and 15.5 and fixed in 4% paraformaldehyde. Embryos were dehydrated in graded methanol and stored at −20 °C. Skin was removed from E15.5 limbs by manual dissection in ice-cold methanol prior to in situ analysis. Expression patterns were confirmed in three repeated in situ analyses containing at least two experimental specimens and one sense control. Whole-mount in situ hybridization for a Hoxd11 riboprobe (a gift from Denis Duboule, University of Geneva, Switzerland) was performed as previously described (Nieto et al. 1996). Proteinase-K treatment prior to hybridization consisted of 10 μg mL⁻¹ for 30 min (E13.5) or 1 h (E15.5).

Results

Ossification of ape pisiforms

The chimpanzee and gorilla pisiforms are distinctly elongate and easily identifiable, even in juvenile specimens (Fig. 2). Evident subchondral surfaces can be visually discerned at each end of many juvenile ape pisiforms. Dorsally this corresponds to the triquetral articular surface, while palmarly it represents the surface underlying an unfused epiphysis. We confirmed this by identifying and refitting the free epiphysis in a sample of cleaned and well-curated specimens (Fig. 2a). The close fit of the secondary and primary center, and the presence of a subchondral surface where they join strongly indicates that the smaller, later-appearing element represents an epiphysis overlying a growth plate.

Radiographic analysis confirmed an early appearance of the primary ossification center in the great apes (Fig. 2b–i). The initial ossification of the dorsal primary center occurs prior to M1 eruption in both chimpanzees and gorillas (Fig. 2b,f). The secondary center makes its first appearance typically during M2 eruption, and complete fusion is seen during M3 eruption. However, there appears to be greater variability within gorillas as one female was observed with complete fusion prior to M2 eruption and two males were only partially fused after completion of M3 eruption. Such variability may reflect greater bimaturational and sexual dimorphism in the gorilla (Shea, 1985; Leigh & Shea, 1995).
Pisiform ossification in the mouse

We traced pisiform ossification in an age series of cleared and stained (alcian blue/alizarin red) mice. This procedure allows for easy distinction of cartilage and bone. Even in very young animals (P4), the cartilaginous pisiform is beginning to undergo calcification at the primary center of ossification (Fig. 3a). A separate secondary center begins to form at the palmar margin of the cartilaginous epiphysis by P7 (Fig. 3b). The secondary center expands and comes in close conformity with the primary center by P13 (Fig. 3c). By P19 the pisiform attains its general adult shape with an intervening strip of cartilage between the primary and secondary centers (Fig. 3d). The two centers eventually fuse between the fourth (P28) and fifth (P35) week (not shown).

The delayed formation of the secondary center and preserved zone of cartilage is consistent with epiphyses overlying a growth plate. To verify this, we conducted a histological analysis of mouse pisiform ossification. At birth (P0), the pisiform is a slightly elongated cartilage model completely composed of undifferentiated chondrocytes (Fig. 4a). Both the dorsal and palmar ends contain a narrow green stained zone about three chondrocytes deep that foreshadows the future articular zone (Reno et al. 2006; Villavicencio-Lorini et al. 2010). In contrast, surfaces along the margins of the pisiform shaft consist of a thinner fibrous perichondrium (Villavicencio-Lorini et al. 2010). At P4, the central chondrocytes begin to undergo hypertrophy and form the primary center of ossification (Fig. 4b), which begins to be replaced by invading bone by P7 (Fig. 4c). At the palmar end, an arc of remaining cartilage contains flattened columnar and hypertrophic chondrocytes that eventually organize (P9) into narrow columnar and hypertrophic zones (Fig. 4d). Similar to other growth plates, a perichondrial ring (zone of Ranvier) can be seen surrounding the bone collar, which extends to the boundary between the columnar and hypertrophic zones (Fig. 4d; Reno et al. 2006). The distinctive nature of the palmar end of the pisiform is apparent when compared with the ossification of the tubercle of
the scapholunate (radiale) (Fig. 4e). While a generally similar structure morphologically and functionally, the scapholunate shows no remaining cartilaginous zones indicative of a growth plate. The pisiform growth plate appears to decrease in activity by P17 with the loss of the hypertrophic chondrocytes (Fig. 4f). While certainly narrower than those of other long bones, the pisiform growth plate shows all of the key hallmarks typical of longitudinal bone growth.

To further verify growth plate activity, we assayed PCNA expression via immunohistochemistry. At early stages, nuclear expression of PCNA is found throughout the population of undifferentiated chondrocytes (Fig. 5a). However, within the growth plate of older specimens, nuclear expression of PCNA was restricted to the thin band of columnar chondrocytes (Fig. 5c). This same pattern of proliferation was previously observed in mouse metatarsals (Reno et al. 2006), and confirms the presence of an active growth plate within the developing mammalian pisiform.

Hoxd11 expression around the developing mouse pisiform

Hox genes are known to be necessary for normal pisiform development in mice. Full deletion of *Hoxa11* or *Hoxd11* results in a highly penetrant phenotype with shortened pisiforms that often fuse to the triquetral (ulnare) or less commonly to the scapholunate and triquetral (Small & Potter, 1993; Davis & Capecchi, 1994; Favier et al. 1995). Double heterozygous animals also show similar pisiform/triquetral phenotypes to the individual *Hoxa11* and *Hoxd11* homozygous knockouts (Davis & Capecchi, 1996). Double homozygous deletion of *Hoxa11* and *Hoxd11* results in the absence of both the pisiform and triquetral (Davis et al. 1995), while in triple homozygous *Hoxa11/Hoxc11/Hoxd11* mutants, the scapholunate and triquetral (presumably along with the pisiform) involute into the radius and ulna, respectively (Koyama et al. 2010). There is also complementary function of other Hox paralogs as *Hoxd11* and *Hoxa10* double mutants show further reduction of the pisiform than does inactivation of *Hoxd11* alone (Favier et al. 1996). In each of these cases, the distal carpals are generally unaffected.

Given the knowledge of the existence of the pisiform growth plate, we further inspected the form of this bone in double heterozygous AaDd and triple allele Aadd mutant mice. Our observations largely confirm the previous results. AaDd mutants have a substantially reduced pisiform. While previous studies have reported occasional pisiform–triquetral fusion, we did not see evidence of this in our four specimens (Fig. 6a; Davis & Capecchi, 1996). This difference could be a result of our small sample or be due to differences between the *Hoxa11* mutant lines. Triple allele mutant (Aadd) lack separate elements for the pisiform and triquetral, and instead form a much reduced and misshapen bone in their place. This suggests that the pisiforms and triquetral are fused as previously described for AAdd mice (Fig. 6a; Davis & Capecchi, 1994). Further analysis is necessary to determine a dosage effect on pisiform growth between

Fig. 6 Hox gene expression and the developing pisiform. (a) Hox11 deletion results in reduced and malformed pisiforms in the adult (8 week) mouse. Palmar is to the left. Top: wild-type (WT) FVB/NJ pisiform for reference. Middle: double heterozygous *Hoxa11*+/del; *Hoxd11*+/− mouse shows reduced size and outgrowth compared with wild-type pisiforms, but otherwise appears generally normal. Bottom: three allele mutant *Hoxa11*+/del; *Hoxd11*−/− mouse shows severe malformation with likely fusion of the pisiform to the triquetral. (b) In situ hybridization of *Hoxd11* at E15.5 illustrates the typical autopod expression in the posterior digits but not in digit 1. A region of proximal expression is observed in the ulnar side of the wrist focused around the pisiform (arrowhead). (c) Ulnar view of a different specimen showing *Hoxd11* expression surrounding the pisiform (arrowhead) and ulnar styloid.
homozygous and three allele mutants. These experiments in mice confirm that Hox11 has a profound effect on pisiform development and outgrowth.

Given the identification of a growth plate in the mammalian pisiform, the effect of Hox11 genes on pisiform development is particularly intriguing. As discussed above, previous work has demonstrated that Hox regulates both initial patterning and eventual growth of the skeleton though expression in the surrounding mesenchyme and perichondrium (Morgan & Tabin, 1994; Villavicencio-Lorini et al. 2010; Swinehart et al. 2013). At both E11.5 and E12.5, there is a clear reduction of Hox11 expression corresponding to the developing carpal region (Koyama et al. 2010). We previously observed and confirmed with new experiments (not shown) a similar gap of Hoxd11 expression at E13.5, although the breadth of the gap may be smaller on the ulnar side of the carpus (Reno et al. 2008). We hypothesize that the more subtle pisiform phenotypes on two allele Hoxa11, Hoxd11, or heterozygous mutant mice may be due to the loss or altered development of the growth plate. Given the previously identified role for Hoxd11 in growth plate regulation and skeletal elongation (Morgan et al. 1992; Davis et al. 1995; Boulet & Capecchi, 2002, 2004), and the proposed significance of the ‘no Hoxd land’ for short bone morphology (Woltering & Duboule, 2010; Andrey et al. 2013), we surveyed the expression of this gene in the E15.5 mouse wrist when the initial condensation of the pisiform can be readily identified. The forelimbs were skinned prior to in situ analysis to facilitate penetration of the probe and visualization of skeletal elements. Hoxd11 shows typical expression at this stage in digits 2–5 and a lack of expression in digit 1 (Fig. 6b,c). Hoxd11 expression appeared strongest in the tissues adjacent to cartilaginous epiphyses and presumptive growth plates of the phalanges as in previous studies (Reno et al. 2008). As predicted, Hoxd11 also showed notable expression in the ulnar side of the wrist, while little Hoxd11 was detected on the radial side. Expression of Hoxd11 surrounded the pisiform, consistent with a role in patterning pisiform elongation via growth plate specification and regulation.

Discussion

The mammalian pisiform growth plate

Here we demonstrate that the mammalian pisiform contains a growth plate separating the two centers of ossification. Although small, the growth plate displays well-organized columnar and hypertrophic zones, and is surrounded by a perichondrial ring and developing bone collar (Fig. 4). The pisiform is thus very similar to metapodials (metacarpals and metatarsals) and phalanges in forming a growth plate at only one end, while the cartilage at the opposite end is replaced directly by the primary center of ossification (Reno et al. 2006).

The existence of a secondary center has been noted in a number of mammals including the rabbit, rat, dog, Old World monkeys, chimpanzee and gorilla; however, its development has not undergone systematic assessment (Retterrer, 1898; Major, 1899; Strong, 1925; Siegbauer, 1931; Ayer, 1940; Eckstein, 1944; Harris, 1944; Smith, 1960; Jouffroy, 1991). Eckstein (1944) provided a brief radiographic description of pisiform ontogeny in the Rhesus macaque. He observed that the primary center is present at birth, and the secondary center first appears between 16.5 and 20.5 months. Between 22.5 and 36 months, the two centers remain separate; however, they fuse prior to year 6 (Eckstein, 1944). This timing is generally comparable to that of the apes based on correlated dental eruption (Cheverude, 1981). The difference in life history between mice and primates makes direct comparison across mammalian orders difficult. We observed that the primary center of the pisiform ossifies relatively late compared with other carpals in apes; however, it is one of the first to ossify in the mouse. Regardless, in both rodents and primates, the secondary center forms substantially later than the primary center.

The first signs of ossification in humans are observed as early as year 7 in girls and as late as year 12 in boys (Francis, 1940; Gilsanz & Ratib, 2005). Interestingly, the initiation of ossification in the human corresponds approximately to the period of secondary center ossification in apes and the macaque. This discrepancy in timing suggests that either: (i) growth plate loss is accompanied by a heterochronic shift in the timing of pisiform formation; or (ii) that it is the primary center of ossification that fails to form and the human bony pisiform is actually homologous to the epiphysis of other mammals. In addition to the similarity in timing, several sources of evidence support the latter hypothesis. First, the general shape and radiological appearance of the human pisiform is more reminiscent of both the ape and mouse epiphysis. Second, there can be substantial irregularity in the formation of the human pisiform. It has occasionally been described in radiographs as appearing ‘crumbly’ or forming from multiple centers (Debierre, 1886; Vasilas et al. 1960; Freyschmidt et al. 2003). We observed at least two cases of gorilla secondary centers forming from two points of ossification, suggesting that this may be a common variant of pisiform epiphyses (Fig. 2i). Third, the mammalian pisiform is actually an apophysis for the insertion of the FCU and ADM (Siegbauer, 1931; Jouffroy, 1991). Given the functional significance of these muscles, the preservation of the insertion site may have required the palmar apophysis to be constrained. If the human pisiform is homologous to the remaining mammalian apophysis, it is not surprising that it has regularly been confused with a sesamoid bone. Further study and a larger sample are required to better quantify the timing of pisiform development in apes and other primates, and to clarify the issue of human homology.

© 2014 Anatomical Society
This is not the first instance of growth plate loss in mammalian evolution. The presence of a single growth plate in metapodials and phalanges is actually a derived trait in theian mammals (Reno et al. 2007, 2013). While the loss of the pisiform growth plate appears to be a human-specific trait, this raises the interesting question of when did the pisiform growth plate originally evolve during tetrapod evolution? Comparisons to other amniotes, such as alligators, could be informative and further verify that the mechanisms specifying the presence or absence of a growth plate are highly evolvable.

Role of Hox in growth plate specification and the developing wrist

Ossification within a cartilage model starts with the differentiation, hypertrophy and apoptosis of central chondrocytes, which are eventually replaced by invading osteoprogenitor cells (Maes et al. 2010). These cells ossify the previously existing cartilage scaffold to form trabecular bone. In typical long bones, the wave of chondrocyte differentiation is directed towards each end (Long & Ornitz, 2013). The columnar and hypertrophic chondrocyte zones expand to form an active growth plate. Around the periphery of developing long bones, flattened perichondrial cells are organized in parallel layers surrounding the cartilage model (Villavicencio-Lorini et al. 2010). At the boundary of the columnar and hypertrophic chondrocytes, the perichondrium lays down a surrounding cortical bone collar (Reno et al. 2006; Bandyopadhyay et al. 2008).

In short bones and epiphyses, the initial process of chondrocyte differentiation is similar. However, expanded cartilaginous growth plates or active perichondrial rings do not form (Reno et al. 2006; Villavicencio-Lorini et al. 2010). Instead, the periphery of these regions largely consists of a narrow three to four cell layer of round chondrocytes that anticipate the future articular zone (Reno et al. 2006; Villavicencio-Lorini et al. 2010). In each of these respects (organized chondrocyte zones, active perichondrial ring and deposition of the bone collar), the pisiform is more similar to long bones (Reno et al. 2006).

The mouse mutant synpolydactyly homolog (spdh) encodes a polyalanine expansion in Hoxd13 that has a negative effect on the function of other Hox genes in the autopod (Villavicencio-Lorini et al. 2010). Villavicencio-Lorini et al. (2010) recently demonstrated that the metacarpals of spdh mutant mice have a malformed perichondrium with reduced expression of numerous perichondrial genes. These metacarpals are dramatically shortened and resemble typical carpalts surrounded by presumptive articular chondrocytes, indicating an important role for Hox genes in perichondrial patterning and the regulation of skeletal growth.

Numerous experiments have shown that Hox genes function at later stages of patterning to modulate longitudinal growth of skeletal elements (Morgan & Tabin, 1994; Yokouchi et al. 1995; Davis & Capecci, 1996; Capecci, 1997; Goff & Tabin, 1997; Papenbrock et al. 2000; Zhao & Potter, 2001). Specifically, mice with reduced Hoxa11/Hoxd11 expression display decreased proliferation within mesenchymal condensations and dramatic shortening of the radius and ulna such that they also resemble short bones (Davis et al. 1995; Boulet & Capecci, 2002, 2004). In contrast, duplication of Hoxd11 results in elongation of the metacarpals (Boulet & Capecci, 2002). These actions appear to be mediated by regulating the expression of Indian hedgehog (Ihh) and parathyroid hormone-like hormone (Pthlh) associated genes that form a crucial feedback loop ensuring coordinated chondrocyte proliferation and differentiation within the growth plate (Vortkamp et al. 1996; St-Jacques et al. 1999). Double heterozygous deletion of Hoxa11 and Hoxd11 results in perturbed expression of Ihh, Pthlh and parathyroid hormone receptor (Pthr; Boulet & Capecci, 2004). Components of this feedback loop are regulated by signals from the perichondrium, which was recently shown to be patterned by Hox (Minina et al. 2002; Kronenberg, 2007; Villavicencio-Lorini et al. 2010).

Given its similarities to long bones, the pisiform serves as a natural experiment to further confirm the role that Hox genes play in growth plate specification and performance. The biphasic regulation of both the HoxD and HoxA clusters produces a region of decreased expression in the developing wrist (Montavon et al. 2011; Andrey et al. 2013; Woltering et al. 2014). Woltering & Duboule's (2010) hypothesis that this 'no Hoxd land' would explain the lack of longitudinal growth in the mesopodium would have been challenged if the pisiform had formed a growth plate in the absence of Hoxd gene expression. However, the demonstration here of persistent Hoxd11 expression on the ulnar side of the wrist adjacent to the pisiform further strengthens the association between growth plate formation and Hoxd expression.

The role of Hox genes in pisiform elongation raises interesting questions regarding the patterning of the tetrapod wrist. The limb expression of the posterior Hoxd genes is controlled by regulatory landscapes located on the opposing telomeric and centromeric domains of the cluster (Fig. 7; Montavon et al. 2011; Andrey et al. 2013). The telomeric enhancer domain regulates Hoxd9–12 expression during early phases of limb development that correspond to the stylopod and zeugopod, while an expansive centromeric regulatory archipelago of deeply conserved elements controls Hoxd10–13 expression in the autopod (Montavon et al. 2011; Andrey et al. 2013). The latter enhancer drives Hox expression in a pattern of reversed collinearity due to its proximity to Hoxd13, and also acts to inhibit Hoxd gene expression in the zeugopod (Tschopp & Duboule, 2011). While the operation of this regulatory archipelago appears to be coordinated, the isolated greatly conserved enhancer islands drive...
gene expression within specific regions of the developing limb (Gonzalez et al. 2007; Montavon et al. 2011). Similar regulatory structure has also recently been identified for the HoxA cluster (Woltering et al. 2014). It has been proposed that this biphasic regulatory structure has facilitated the evolution of the tetrapod wrist by establishing the ‘no Hox land’ (Woltering & Duboule, 2010; Andrey et al. 2013). However, our results indicate that the transition between the dominance of the telomeric and centromeric regulatory landscapes does not in itself preclude Hox expression in the wrist. Instead, Hox expression in the wrist is likely to be tightly regulated and may play an important role in carpal evolution.

While the wrist is traditionally considered part of the autopod, the embryology of the proximal carpal row is intimately related to the distal ulna and radius (Keibel & Mall, 1910; Holmgren, 1952; Koyama et al. 2010). In addition, the Hoxd11 carpal expression domain appears to be separated from the region of Hoxd11 expression in the digits (Fig. 6). However, it is currently unknown whether expression of Hoxd in the ulnar wrist is controlled by the early telomeric landscape, later centromeric archipelago or a combination of both (Fig. 7). Further consideration of the morphology of the pisiform in various Hox mutants such as spdh could help resolve this issue.

Significance for the evolution of human pisiforms
The phenotypes of mice with reduced expression of Hoxa11 and Hoxd11 suggest that modification of these genes or their downstream targets could serve as potential mechanisms for pisiform reduction in humans (Small & Potter, 1993; Davis & Capecechi, 1994; Favier et al. 1995, 1996). We previously proposed a model suggesting that the co-residency of the fingers and forearm within the Hoxd11 expression territory may underlie their co-evolution in hominoids (Reno et al. 2008). A long pisiform is observed in Au. afarensis at 3.2 Ma, and the Bouri skeleton indicates that forearms did not shorten until after 2.5 Ma (Bush et al. 1982; Asfaw et al. 1999; Reno et al. 2005). Modern human-like forearm proportions are observed in H. erectus at 1.5 Ma (Walker & Leakey, 1993). This may suggest that both forelimb shortening and pisiform reduction were coincident between 2.5 and 1.5 my. The human pisiform initially develops as a mesenchymal condensation adjacent to the ulna before migrating to the palmar surface of the triquetral (Keibel & Mall, 1910). Thus, it is conceivable that shared developmental processes of the digits and forearm could result in pleiotropic reduction of the pisiform (Reno et al. 2008).

Alternatively, the coincident reduction of forearm, finger and pisiform lengths could reflect independent selection associated with stone tool manufacture and use. Despite the drastic change in pisiform length, its effect on wrist function has not been thoroughly studied. There are at least three reasons to suggest that the pisiform may have important functional consequences for the hominoid wrist. First, the human, and potentially African ape, pisiform has a substantial degree of sliding mobility across its relatively simple articulation with the triquetral, which may exceed that of other primates (Moojen et al. 2001; Jameson et al. 2002). In monkeys and early Miocene hominoids such as Proconsul, the pisiform articulates into a socket between the triquetral and ulnar styloid as in the mouse (Fig. 1; Napier & Davis, 1959; Beard et al. 1986; Jouffroy, 1991; contra Lewis, 1972). Similarly, the gibbon pisiform is buttressed proximally by a novel bone, the os Daubentonii, despite the withdrawal of the ulnar styloid. In apes and humans, the articulation of the pisiform has migrated distally to lie on the palmar surface of the triquetral. The orangutan pisiform, however, is stabilized by a direct articulation with the hamate hamulus (Lewis, 1972).

Second, among hominoids, the African ape pisiform is quite long (Fig. 1). While the orangutan pisiform is short relative to those of other apes, it is still substantially longer than that of humans (Lewis, 1972; Sarmiento, 1988). In great apes and humans, the pisiform is oriented generally palmarly, in contrast to its more proximal orientation in hylobatids (Lewis, 1972; Sarmiento, 1988). These changes in length and orientation can have substantial effects on the lever-arm of the FCU and the ADM. The fossil record indicates that the pisiform reduced sometime between Au. afarensis and Neandertals (Trinkaus, 1983). This anatomical change may be related to shifts in locomotor habitus. It had been previously suggested that the
long pisiform in *A. afarensis* implies maintenance of powerful forearm musculature and continued arboreality (Stern & Susman, 1983). However, other anatomical evidence suggests that dependence on climbing had already been reduced in *Australopithecus* (Lovejoy, 1988, 2005). Perhaps the evolution of this part of the wrist anatomy reflects a different type of repetitive behavior, one relatively unique to the human lineage, tool use. Though still a very broad interval, the start of this window approximately corresponds to the adoption and intensification of stone tool manufacture and use starting approximately 2.6 Ma (de Heinzelin et al. 1999; Semaw et al. 2003). The FCU is one of two muscles recruited in both hands during percussive tool manufacture (Marzke et al. 1992). As such, the reduced lever-arm in humans has been proposed to limit wrist flexion when stabilizing the carpus (Marzke et al. 1992); however, such a conformation may also result in increased axial loads. Alternatively, reduced projection of the pisiform may improve palmar grip and opposition between the thumb and fifth digit (Marzke et al. 1992; Young, 2003; Lovejoy et al. 2009).

The third possible explanation for pisiform reduction results from the pisiform being a component of multiple anatomical complexes with important functional and clinical significance. The flexor retinaculum attaches along its radial border (Manley et al. 2013). The pisiform defines one of the boundaries and potentially the depth of both the carpal tunnel and ulnar canal (Fig. 4e; Marzke, 1971; Pevny et al. 1995). Both passageways can be involved in traumatic and repetitive use injuries. Fracture of the pisiform, though infrequent relative to other carpals, can result in chondromalacia, degenerative osteoarthritis, and chronic pain and weakness if left untreated (Fleege et al. 1991). Tasks that require frequent use of the power squeeze grip such as racquet sports, which are similar to the motions utilized during stone tool production (Williams et al. 2010), can result in pain and disability when associated with pisiform instability (Helal, 1978a,b). While dislocation is also relatively rare due to the sturdiness of the associated pisotrapezial, pisohamate and pisometacarpal ligamentous complex, instability can result in compression of the ulnar nerve with paraesthesia of the hand and weakness of the hypothenar musculature (Pevny et al. 1995; Rayan et al. 2005; Sharma & Massraf, 2005). Therefore, given the substantial mobility of the human and potentially African ape pisiform, the importance of the attached musculature, and its close relationship to clinically relevant structures, it is reasonable to hypothesize that pisiform reduction occurred so as to increase stability of the pisotrapezial articulation. Limiting chronic and repetitive use injury associated with stone tool manufacture and use would likely be of significant selective advantage (Marzke, 2013). Thus, mechanisms that could lead to the specific reduction of the pisiform could have been advantageous in early Homo. Elimination of the growth plate and primary center of ossification via reduction of the Hox11 genes in conjunction with other factors could be a potential mechanism. Further work is necessary to explore this hypothesis.

Concluding remarks

To our knowledge, this is the first histological description of the pisiform growth plate. Verification of its existence has implications for the evolution and development of the hominoid wrist. Growth plate loss provides a mechanism for the dramatic reduction of the human pisiform, one of the more profound changes in the evolution and development of the human wrist and hand. Furthermore, the presence of a growth plate in the carpus has consequences for the interpretation of Hox gene function in skeletal development. This provides a plausible explanation for the greater effects that *Hoxa11* and *Hoxd11* mutant alleles have on pisiform size compared with other carpals. Further study of the development of the pisiform in these mice is necessary to determine the effect that modified Hox function has on pisiform growth plate formation. We also establish the continued expression of *Hoxd11* on the ulnar side of the developing wrist. This confirms our understanding that Hox gene expression is tightly regulated, and suggests that the reduction of Hox expression in the mesopodium between the zeugopod and autopod is not a simple consequence of a complex biphasic regulatory motif of the *HoxA* and *HoxD* clusters. Instead, the precise regulation of *Hox* genes is necessary to sculpt wrist morphology (Davis & Capecchi, 1996).

Such mechanisms may lie in either of the centromeric or telomeric regulatory landscapes, and are likely to have been fundamental to tetrapod evolution (Woltering & Duboule, 2010; Andrey et al. 2013).

Acknowledgements

Anne Boulet and Mario Capecchi (HHMI, University of Utah) kindly provided the *Hox11* mutant mice used in this study, and Denis Duboule (University of Geneva) provided the *Hoxd11* in situ probe. The authors thank Yohannes Haile-Selassie (Department of Physical Anthropology, CMNH) for access to primate specimens in his care, and Lyman Jellema for curatorial assistance and help collecting the radiographs. The authors thank Tim Ryan for image processing and 3D reconstruction of the mouse micro-CT. The authors also appreciate the laboratory assistance of Paige Lynch, Catherine Roberts and Ashley Birris. Funding is provided by Penn State’s College of Liberal Arts and Huck Institutes of Life Sciences.

Author contributions

KMK, COL and PLR conceived of the study; KMK, JEH and PLR conducted the experiments or collected the data; KMK and PLR analyzed the data; KMK and PLR drafted the manuscript; KMK, JEH, COL and PLR revised and approved the article.

© 2014 Anatomical Society
References

