Can Flexioss be used to to prove LSJL or Lateral Impact Loading?

Arthur Lazar is someone who has spoken about LSJL in the past on Quora. “Not really. There is 0 evidence for that. The original working experiment was performed on mice – mice growth plates never ossify. MAYBE if someone would develop a machine which can put perfect constant pressure, perfectly shaped for bone area where the pressure is supposed to be, then in theory it could work. But this is a bro-science, so it’s a big MAYBE. But as for now, using clamp, dumbelss or whatever you can use to press at bone would never work.”<-Mice growth plates don’t ossify but they become senescent which is just as bad for growth.

Here’s some more of his thoughts on LSJL: “Yes, I do work on a device for automatic long bone loading method as I believe that the standard lsjl loading (manual with clamps, weights, mpistols) is an invalid approach that lacks consistency, frequency and stability which all was provided with the original, successful experiment.”<-I don’t know what an mpistol is. I believe it is a typo. I don’t know what the original intent is.

“Thank you for your interest, but currently my team is complete and current priority of the projects puts the lsjl idea on the bottom of the list. When I am done with the prototype and IF it will have a desired affect on Flexioss structure (in the terms of force application on the structure) I will publish the design in order to expand the team and get potential investors interested.”

Here’s another set of communications someone had with him.

So the question is should we be using flexioss to try to find the best loading regime to induce the proper stimulation to induce new longitudinal bone growth. I believe personally that the best regime is some kind of lateral impact loading(I believe that tapping the epiphysis would be superior than the diaphysis now but I am trying both). Clamping has a slippage problem which impact does not have. The loads of direct lateral impact are stronger than that occur during normal physiological activities which are more axial.

Lateral impact does occur during boxing both to the hand and to the face and ribcage. Also, it occurs to the feet bones during running(but this depends on whether you are a heel or toe striker). It also happens to bones during muay thai kick boxing.

The problem is that this impact is often at irregular intervals and not targeted to specific areas of the bone such as the epiphysis. The epiphysis is where there is less cortical bone, is close to where the growth plates used to reside in skeletally mature individuals, and is close to the articular cartilage which if stimulated could potentially contribute to height growth. In muay thai you have no control over where you are kicked and if you do kick you are trying to use the strongest part of the bone.

Lateral impact has the potential in my opinion to drive the most fluid forces throughout the bone. Greater than any axial impact certainly due to the pressure gradient of the bone and the epiphysis is the weakest most porous part of the bone so impact to that area has the potential to drive fluid forces throughout the entire bone. Muscular contractions also have the ability to stimulate fluid forces throughout the bone but that is limited by muscular size and strength. Lateral impact also has the ability to gradually induce plastic deformation throughout the bone. Most plastic deformation occurs axially to shorten the bones such as in rickets/paget’s disease etc. Lateral impact loads have the potential to induce plastic deformation in a way such as to lengthen the bones.

Here is the flexioss.

So the question is can we use the flexioss to find the best way to induce lateral plastic deformation in such a way as to lengthen the bones or to induce fluid forces to either induce articular cartilage endochondral ossification or to cause denovo cartilagenous regions within the bone.

In the study Dose-dependent new bone formation by extracorporeal shock wave application on the intact femur of rabbits., they found trabecular bones heaving with cartilagenous tissue which would be huge as bone tissue is not capable of interstitial bone growth.

The manufacturers of flexioss claim that it has properties similar to that of cancellous bone so yes it can potentially be used to find the best loading regime to induce plastic deformation in such a way as to longitudinally lengthen the bone. Obviously, it can’t really be used to mimic the fluid properties of the bone.