Ligaments constrain growth

The reason that the jaw can grow via stretching by forwarding positioning and bite-jumping appliances is that it is not as constrained by ligaments as other bones.  It’s possible that other movable joint regions like the wrists, fingers, and toes would also be stretchable.  The wrists would come under extreme stress due to the farmers walk so if this true there should be anecdotal evidence of longer arms due to the farmers walk.  It is possible that a new height increase method could be invented that causes enough tensile strain in the articular cartilage to activate endochondral ossification in that region.  The ligaments holding the bone together would constrain this.  This would also help explain why people with Marfan’s become taller as they have more flexible joints and therefore their growth is less constrained by ligaments.   Here’s another connective tissue disorder that may affect longitudinal bone growth.  It’s also possible that differences between condylar cartilage and articular cartilage allow this to happen in the mandible but not in other joints.

So if anyone could look for instances of longer arms due to heavy farmers walk.  This would be much easier to do than LSJL.  So any research on this would be a great boon to further the cause of height increase.

The adaptive remodeling of condylar cartilage—a transition from chondrogenesis to osteogenesis.

“Mandibular condylar cartilage is categorized as articular cartilage but markedly distinguishes itself in many biological aspects, such as its embryonic origin, ontogenetic development, post-natal growth mode, and histological structures. The most marked uniqueness of condylar cartilage lies in its capability of adaptive remodeling in response to external stimuli during or after natural growth. The adaptation of condylar cartilage to mandibular forward positioning{basically bringing your jaw forward} constitutes the fundamental rationale for orthodontic functional therapy, which partially contributes to the correction of jaw discrepancies by achieving mandibular growth modification. The adaptive remodeling of condylar cartilage proceeds with the biomolecular pathway initiating from chondrogenesis and finalizing with osteogenesis{so basically by stretching the articular cartilage you activate enchondral ossification enabling you to grow on the longitudinal ends of the bone}. During condylar adaptation, chondrogenesis is activated when the external stimuli, e.g., condylar repositioning, generate the differentiation of mesenchymal cells in the articular layer of cartilage into chondrocytes, which proliferate and then progressively mature into hypertrophic cells. The expression of regulatory growth factors, which govern and control phenotypic conversions of chondrocytes during chondrogenesis, increases during adaptive remodeling to enhance the transition from chondrogenesis into osteogenesis, a process in which hypertrophic chondrocytes and matrices degrade and are replaced by bone. The transition is also sustained by increased neovascularization, which brings in osteoblasts that finally result in new bone formation beneath the degraded cartilage.The repositioning of the mandibular condyle in adult rats led to a reactivation of chondrogenesis in condylar cartilage which otherwise is at resting status, and finally results in increased bone formation

“chondrogenic activity of BMP-2 in vitro involves the action of the cell-cell adhesion protein, N-cadherin, which functionally complexes with beta-cateninthe change of condyle position relative to the glenoid fossa constitutes an important trigger for [the endochondral ossification related adaptation of the mandible].”

The deviation of the condyle from the glenoid fossa by mandibular forward translation is the basis for orthodontic functional therapy, which aims to enhance condylar growth and therefore to eliminate the discrepancy between upper and lower jaws.

“a decrease in compressive loading enhances condylar growth, whereas an increase in loading inhibits growth”

Note that they do say that condylar cartilage is distinct from articular cartilage.

Here’s another study:

Murine TMJ loading causes increased proliferation and chondrocyte maturation.

“The purpose of this study was to examine the effects of forced mouth opening on murine mandibular condylar head remodeling. We hypothesized that forced mouth opening would cause an anabolic response in the mandibular condylar cartilage. Six-week-old female C57BL/6 mice were divided into 3 groups: (1) control, (2) 0.25 N, and (3) 0.50 N of forced mouth opening. Gene expression, micro-CT, and proliferation were analyzed. 0.5 N of forced mouth opening caused a significant increase in mRNA expression of Pthrp, Sox9, and Collagen2a1, a significant increase in proliferation, and a significant increase in trabecular spacing in the subchondral bone, whereas 0.25 N of forced mouth opening did not cause any significant changes in any of the parameters examined. Forced mouth opening causes an increase in the expression of chondrocyte maturation markers and an increase in subchondral trabecular spacing.”

10 thoughts on “Ligaments constrain growth

    1. Tyler Post author

      You may be able to grow taller via articular cartilage which can undergo endochondral ossification. The problem is that the ligaments prevent the tensile strain needed to stimulate this except in the jaw. It may be possible to cause tensile strain by lateral compression of the articular cartilage(flattening like a pancake).

  1. Charles

    Hi Tyler, i’m not sure to understand. Does that mean that growth after 25yo is not possible more because of the ligaments than the bones?

  2. Cody

    Thanks for keeping this going you guys. I definitely want to know how to grow taller or at least attempt to figure it out. I can’t do it on my own and have too much going on to fully focus on it right now. Thank you for keeping this website updated. I think this will change the world if it is every figured out.

  3. Patrik

    Hey Tyler, what do you think of tapping? I haven’t seen you giving it any mention for a while now and I’m wondering if there’s any particular reason to it.

  4. Nicola

    In a time not too long ( max 5 years) , can we get tall( also only 2 inches) without the painfull surgery?

  5. Xan

    Interesting post. I was reminded of a previous post involving an older man who took injections (perhaps, Relaxin? Digging might be required for specifics), and grew a great deal, but the rapid elongation of his legs required surgery to “pin-down” or stabilize his connective tissue? Perhaps, then this drug mentioned in this particular post was successful because it lengthened his ligaments…

    Also, I’m trying to think of other possible scenarios for this stretch/weight-induced bone growth with “farmers walk.” Maybe involvement in certain sports over time could result in slight bone lengthening? Like, basketball?

    I look forward to your future posts. Thanks —

Comments are closed.