Monthly Archives: October 2021

Radial Shockwave Treatment may stimulate bone growth in the growth plate

It’s always exciting to see new possible treatments but this one may be pretty minor.  Extracorporeal shockwave treatment has been written about on the blog before.  Some more.  These studies found that extracorporeal shockwave treatment can stimulate growth.  Extracorporeal shockwave treatment can also stimulate the periosteum.

Radial shockwave treatment promotes chondrogenesis in human growth plate and longitudinal bone growth in rabbits

“The process of longitudinal bone growth occurs at the growth plate where the chondrocytes undergo apparent structural and molecular changes to promote growth. Recent reports suggest that radial shockwave treatment (rSWT) stimulates bone length in cultured fetal rat metatarsals. Therefore, we investigated if rSWT has similar growth promoting effects on cultured human growth plate fragments and addressed the same in a preclinical in vivo rabbit model by subjecting their growth plates to rSWT.

Short-term effects of high-energy rSWT were evaluated in a unique model of cultured human growth plate cartilage (n = 5) wherein samples exposed to rSWT were assessed for chondrogenic markers at 24 h in comparison to unexposed samples obtained from the same limb.

Local in vivo effects were studied in six-week-old rabbits{6 week old rabbits are about equal to 42 week humans which is very young} who had their distal femurs exposed to four weekly sessions of rSWT at low- and high-energy levels (n = 4 each){weekly sessions are not that much}. At sacrifice, histomorphometric and immunohistochemistry analyses were performed. For effect on longitudinal growth, proximal tibiae of 22-week-old rabbits (n = 12) were asymmetrically exposed to rSWT; the contralateral side served as untreated controls. At sacrifice, the final bone length was measured.

In the ex vivo model of cultured human growth plate cartilage, rSWT exposure upregulated SOX9 and COL2A1 compared to control.

In the immature rabbit model, an increased number of proliferative chondrocytes and column density was seen for both the energy levels. In the adolescent rabbits, an increase in tibial length was observed after the fourth session of high-energy rSWT and until six-weeks after rSWT compared to the untreated limb.

Our preliminary experimental results suggest that rSWT may serve as a non-invasive treatment and possibly a safe strategy to stimulate longitudinal bone growth. However, further studies are needed to assess the in vivo effects of rSWT in models of disturbed bone growth.”

” Low-level laser beams and ultrasound are non-invasive modalities that have been investigated without success. Extracorporeal shockwave therapy (SWT) is a candidate for non-invasive modulation of growth plate activity as it has been successfully tested in fracture healing, nonunions, and other musculoskeletal disorders with minor complications in the clinic ”

“After exposure to rSWT, gene expression analysis was performed after 24-h of culture. We observed increased expression of SOX9 (mean fold change: 3.0 ± 2.3) and COL2A1 (mean fold change: 19.0 ± 29.26) in treated samples when compared to untreated controls”

“he chondrocytes-column density (columns per mm growth plate width) in the proliferative zone was significantly increased in both the low-energy (low-energy rSWT: 40 ± 12 and control: 32 ± 9) and the high-energy rSWT groups (high-energy rSWT: 51 ± 13 and control: 37 ± 3)”

That looks like a pretty dramatic impact.  Although shockwave also increased chondrocyte apoptosis so it’s possible that it increases growth rate but not total growth plate assisted height.

“At 26 weeks of age, after four sessions (at weekly intervals) of high-energy rSWT, there was a significant increase in the differences between the lateral tibial length measured on radiographs when compared to untreated controls (mean difference: 0.28 cm; p = 0.008). Six-weeks after the last session of high-energy rSWT the difference in the lateral tibial length treated bones compared to untreated controls was 0.03 cm (p = 0.001)”  Rabbit tibial length may be about 10cm.  So 0.28cm is like a 2.8% increase. Which is kind of significant.

” it is challenging to maintain this significant increase in bone length when dealing with healthy animals as the bone lengths tend to equalize after treatment withdrawal”<-so it may only affect growth rate not growth capacity.

So basically it’s worth studying but we don’t know if it only increases growth rate.