Monthly Archives: August 2023

Deer antlers-could they be key to inducing new growth plates

Deer antlers are a mammalian appendage capable of regeneration. I don’t believe that eating deer antlers could induce growth plate regeneration but possibly the study of deer antlers could help enable growth plate regeneration. And perhaps studying deer antlers could enable the growth plates to be open for longer. One of the problems with limb lengthening surgery remains muscle and other soft tissue tightness. The growth plate is connected to these soft tissues via the enthesis so it is logical to think that perhaps the enthesis can help provide the cellular ingredients for those soft tissues to grow as needed via the enthesis.

A population of stem cells with strong regenerative potential discovered in deer antlers

<-perhaps for example there could be an osteotomy and an injection of these stem cells in a region near the enthesis to form new growth plates.

“The annual regrowth of deer antlers provides a valuable model for studying organ regeneration in mammals. We describe a single-cell atlas of antler regrowth. The earliest-stage antler initiators were mesenchymal cells that express the paired related homeobox 1 gene (PRRX1+ mesenchymal cells). We also identified a population of “antler blastema progenitor cells” (ABPCs) that developed from the PRRX1+ mesenchymal cells and directed the antler regeneration process.{could we use similar cells to form new growth plates?} Cross-species comparisons identified ABPCs in several mammalian blastema. In vivo and in vitro ABPCs displayed strong self-renewal ability and could generate osteochondral lineage cells. Last, we observed a spatially well-structured pattern of cellular and gene expression in antler growth center during the peak growth stage, revealing the cellular mechanisms involved in rapid antler elongation.”

“Lower vertebrates have a remarkable capacity to heal in a scar-free manner and regenerate lost appendages, even at the adult stage”

“deer antler offers a singular model to study spontaneous regeneration in mammals because its
regeneration is similar and clinically relevant to mammalian long-bone development”

“hard antlers are cast from their pedicles, then both antler bone and cartilage are regenerated from the pedicle periosteum located in the pedicle stumps”

“We further identified a population of regenerative progenitor cells, ABPCs, in the antler blastema, with impressive capacities for self-renewal, osteogenic–chondrogenic differentiation, and bone-tissue repair.”<-in the paper it goes over more what the cell characteristics of the progenitor cells might be. The question is: How do we translate what’s going on in the deer antlers to bone?

Vibration increases cartilage thickness

If vibration increases cartilage thickness. It is possible too that vibration could induce articular cartilage endochondral and stimulate growth plate growth. There are studies that show that vibration may be do this but the results have been non-overwhelming and mixed. It is possible however that it may be that the vibration stimulus needs to be improved. For example, laterally applying the vibration to the epiphysis and applying the vibration directly to the bone may improve the stimulus. But there are still several studies that show vibration is promising. It’s just the lack of a “smoking gun” study.

Vibration training intervention to maintain cartilage thickness and serum concentrations of cartilage oligometric matrix protein (COMP) during immobilization

“1) 14-days of immobilization of young healthy subjects using a 6°-“head-down-tilt-bed-rest”-model (6°-HDT) would reduce cartilage thickness in the knee and serum Cartilage oligometric matrix protein (COMP) concentration and 2) isolated whole body vibration training would counteract the bed rest effects.”

“While the control intervention resulted in an overall loss in average cartilage thickness of −8% (pre: 3.08 mm±0.6 mm post: 2.82 mm±0.6 mm) in the weight-bearing regions of the tibia, average cartilage thickness increased by 21.9% (pre: 2.66 mm±0.45 mm post: 3.24 mm±0.63 mm) with the vibration intervention. No significant differences were found in the weight-bearing regions of the femur. During both interventions, reduced serum COMP concentrations were observed (control intervention: −13.6±8.4%; vibration intervention: −9.9±3.3%).”<-it is possible that a thickness in cartilage could increase height and induce articular cartilage endochondral ossification it could also stimulate growth plate growth. The thickness of the cartilage was increased versus control which is good but COMP is reduced compared to control which is bad.

“Cartilage presumably maintains and responds to the loads placed on joints during activities of daily living. For instance, the loads generated at the knee during walking correlate with cartilage thickness in the weight-bearing regions of the knee”<-so we could potentially change the way we load to alter cartilage thickness.

“COMP plays a major role in stabilizing the extracellular matrix through its interaction with collagen fibrils and other matrix components. Serum COMP concentrations are elevated in patients with knee osteoarthritis and rheumatoid arthritis but also after a moderate walking exercise in healthy adults and after intense running exercise in athletes. Thus, serum COMP concentration appears to be sensitive to physiological loading.”

“Vibration frequencies between 15 Hz and 90 Hz have been used to achieve adaptations in muscle and bone”

“Training sessions were scheduled at least 30 min after breakfast and lunch. Subjects walked the distance between their room and the training room each session (∼25 steps). Each vibration training unit was composed of five times 60 s of isometric exercise bouts on a vibration platform (Galileo 900, Novotec Medical GmbH, Pforzheim, Germany) in an upright standing position with a knee flexion angle of 30°. Subjects carried an additional load of 15% of their body mass on a diving belt around their pelvis. Between exercise bouts subjects rested for 60 s while sitting on a chair. The vibration platform vibrated at 20 Hz with approximately 3 mm amplitude at the centre of the foot.”<-the vibration in this study could be improved.

“Average and maximum thicknesses in the tibial cartilage increased significantly by 21.9% and 26.6%, respectively[due to vibration]. The percentage change in average and maximum cartilage thicknesses did not differ between the medial and the lateral compartments of the tibia for both study phases. Cartilage thickness in the lateral and the medial compartments of the femoral cartilage did not show significant changes due to the bed rest or to the training intervention”<-maybe the way we as humans typically load does not adequate load the lateral and medial compartments of the femoral cartilage and that’s why we don’t typically gain height there. It’s possible that if all parts of the femoral cartilage was engaged we would gain height and therefore if we change our loading we could stimulate all components of the femoral cartilage and thereby gain height.

“the increased cartilage thickness after the vibration training if the mechanical stimulus increases proteoglycan content of cartilage.”

“Proteoglycans are negatively charged and thus exert a large swelling pressure that causes tensile stress on the surrounding collagen network”