Lowering Fbn1 levels may increase bone length(Marfan’s Syndrome)

Even though it mainly seems like it’s an active growth plate thing, it’s possible that FBN1 deficiency could stimulate neo-growth plate activation as it does stimulate TGF Beta activation and there’s ectopic tendon calcification.  This Franscesco Ramirez scientist seems one to watch in understanding why Marfan’s Syndrome causes longitudinal bone overgrowth.   If we understand why Marfan’s Syndrome causes overgrowth then maybe we can use that to our advantage especially if it is connected to tendons which are connected to muscles and are therefore easier to manipulate.  Interesting that in the grant FBN1 inactivation is associated with greater TGF-Beta in the tendon/ligament but decreases TGF-Beta in the perichondrium.

TENDON-DEPENDENT CONTROL OF LONGITUDINAL BONE GROWTH

“Skeletal abnormalities caused by disproportioned bone overgrowth (LBO), are a common trait in Marfan syndrome (MFS), a connective tissue disease caused by mutations in the extracellular matrix (ECM) protein and TGFβ regulator fibrillin-1 (Fbn1). The cause of LBO in MFS is unknown and therapies are not available. Fibrillin-1 hypomorphic mouse model (Fbn1mgR/mgR) faithfully replicates MFS skeletal manifestations including elongated bones however, its early demise due aortic rupture limit the magnitude of LBO investigation.

To circumvent Fbn1mgR/mgR lethality and investigate the contribution of specific skeletal tissues to LBO, Fbn1 gene expression was targeted in developing limbs by crossing Fbn1Lox/Lox mice with Prx1-Cre, in or bone with Osx-Cre, in cartilage and perichondrium with Col2-Cre, in skeletal muscles with Mef2c-Cre, and ligaments and tendons with Scx-Cre. Bones length of Fbn1 conditional mice KO was measured and relevant histological, cellular and biomechanical parameters were assessed.

Fbn1Prx1−/+ and Fbn1Prx1−/− mice had longer limbs bones compared to WT mice and amount of fibrillin-1 in the limb matrix was inversely proportional to bone length. Interestingly, Fbn1 gene targeting in ligaments/tendons resulted in LBO, altered tissues’ mechanics and TGFβ-induced switch of tendon stem cells to chondrocytes{could we make tendon cells turn into chondrocytes as adults via TGF Beta?}. Gene targeting in other limb’s anatomical locations did not result in LBO thus ruling out the participation of surrounding tissues to this bone phenotype.

Fbn1 gene inactivation in ligament/tendon is associated with increased local TGFβ, altered biomechanical properties and LBO[longitudinal bone overgrowth]. As previously reported, ligaments/tendons respond to changes in mechanical load by increasing the levels and/or the activity of TGF-β while bones undergo morphological adaptation in response to muscle loads transmitted by tendons. We hypothesize that dysregulation of local TGFβ signaling and altered biomechanical properties of fibrillin-1 deficient ligaments/tendons affect endochondral ossification by improper load transmission to bone. By showing ligament/tendon-dependent regulation of postnatal longitudinal bone growth this study provides a paradigm-shift in tendon biology and it shades a new light on LBO pathophysiology in MFS, thus providing the bases for new pharmacological interventions for this and related skeletal conditions.”

So lower levels of Fbn1 means longer bone length and FBN1 deficient tendons and ligaments alter endochdondral ossification by altering load transmission to bone.  We can alter load transmission via mechanical stimulation without altering FBN1.

Here’s a grant(2016) related to the subject:

TENDON-DEPENDENT CONTROL OF LONGITUDINAL BONE GROWTH

“disproportionate increase of longitudinal bone growth that causes serious malformations of the limbs, anterior chest and Spine is the clinical hallmark of patients afflicted with Marfan syndrome (MFS), a connective tissue disease caused by mutations in the extracellular matrix (ECM) protein and TGFβ regulator fibrillin-1. Our preliminary studies of mice with tissue-specific ablated Fbn1 gene activity have revealed an unsuspected causal relationship between tendon/ligament (T/L) dysfunction and longitudinal bone overgrowth (LBO). Specifically, (1) Fbn1 inactivation in T/L cells was necessary and sufficient to promote linear bone overgrowth associated with dysregulated growth plate (GP) gene expression; (2) fibrillin-1-deficient tendons displayed abnormal tissue architecture and impaired mechanical properties, particularly at bone- insertion sites; (3) the relative amount of fibrillin-1 correlated with discrete changes in tendon mechanics; (4) tendon-derived stem/progenitor cell (TSPC) cultures deficient for fibrillin-1 differentiated improperly as result of increased latent TGFβ activation; and (5) ectopic tendon calcification of fibrillin-1-deficient tendons was commonly observed. fibrillin-1 assemblies normally restrict GP-driven linear growth of neighboring bones by specifying the mechanical properties of tendons through the control of ECM organization and TGFB-regulated TSPC differentiation. Accordingly, the scope of our proposal is two-fold; first, to characterize how fibrillin-1 deficiency translates into tendon dysfunction and tendon-associated LBO, and second, to establish how local TGFB hyperactivity in tendons promote tissue degeneration thereby leading to excessive linear growth of the adjacent, structurally normal bones. To this end, we will characterize the expression of molecular and cellular determinants of tendon development and maturation in mice deficient for fibrillin-1 in T/L matrices, in addition to employing computational approaches to identify probable disease-causing molecular abnormalities in the GP of these tendon-defective animals (Aim 1); apply data-driven statistical models to determine how graded fibrillin-1 deficiencies correlate with tendon mechanics and associated LBO (Aim 2); and assess whether systemic TGFβ neutralization modifies tendon pathology and LBO severity in fibrillin-1-deficient mice (Aim 3). The results of these investigations are expected to substantially advance our limited understanding of tendon function in health and disease and implicitly, of the cellular, molecular and tissue factors that coordinate the postnatal growth of musculoskeletal tissues. ”

Here’s the updated 2020 grant.

It seems exactly the same as the 2016 grant.

Fibrillin-1 deficiency in the outer perichondrium causes longitudinal bone overgrowth in mice with Marfan syndrome

“A disproportionate tall stature is the most evident manifestation in Marfan syndrome (MFS), a multisystem condition caused by mutations in the extracellular protein and TGFβ modulator, fibrillin-1. Unlike cardiovascular manifestations, there has been little effort devoted to unravel the molecular mechanism responsible for long bone overgrowth in MFS. By combining the Cre-LoxP recombination system with metatarsal bone cultures, here we identify the outer layer of the perichondrium as the tissue responsible for long bone overgrowth in MFS mice{the perichondrium is less mature than the periosteum so it is unclear whether manipulating the periosteum would have any impact on longitudinal bone overgrowth}. Analyses of differentially expressed genes in the fibrillin-1-deficient perichondrium predicted that loss of TGFβ signaling may influence chondrogenesis in the neighboring epiphyseal growth plate (GP). Immunohistochemistry revealed that fibrillin-1 deficiency in the outer perichondrium is associated with decreased accumulation of latent TGFβ-binding proteins (LTBPs)-3 and -4, and reduced levels of phosphorylated (activated) Smad2. Consistent with these findings, mutant metatarsal bones grown in vitro were longer and released less TGFβ than the wild-type counterparts. Moreover, addition of recombinant TGFβ1 normalized linear growth of mutant metatarsal bones. We conclude that longitudinal bone overgrowth in MFS is accounted for by diminished sequestration of LTBP-3 and LTBP-4 into the fibrillin-1-deficient matrix of the outer perichondrium, which results in less TGFβ signaling locally and improper GP differentiation distally.”

<-I could not get this full paper.  But also note that it’s the long bones that grow more with marfan’s syndrome so it’s possible that in different bones FBN1 has a different effect on TGFBeta

Interesting that less TGF Beta resulted in more longitudinal bone growth.  I’ve always thought that TGF Beta is good for height.  It could be that Smad 1/5/8 phosphorylation results in terminal differentiation.  According to Inhibition of TGF-β Increases Bone Volume and Strength in a Mouse Model of Osteogenesis Imperfectainhibition of TGF Beta increases bone strength(no mention of bone length however).

According to this study by Ramirez:
“limbs deficient for fibrillin-1 (Fbn1Prx1–/– mice) is accounted for by premature depletion of MSCs and osteoprogenitor cells combined with constitutively enhanced bone resorption. “