Eating Yams to grow taller?

Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice

“Plants-releasing exosome-like nanovesicles (PENs) contain miRNA, bioactive lipids, mRNAs, and proteins to exert antioxidant, anti-inflammatory, and regenerative activity. Substances extracted from yams have been reported to promote osteoblast growth in bone regeneration, which prevent weak and brittle bones in osteoporosis. Herein, we describe the beneficial effects of yam-derived exosome-like nanovesicles (YNVs) on promoting differentiation and mineralization of osteoblasts for bone regeneration in ovariectomized (OVX)-induced osteoporotic mice. YNVs were successfully isolated and characterized. YNVs stimulate the proliferation, differentiation, and mineralization of osteoblasts with increased bone differentiation markers (OPN, ALP, and COLI). Interestingly, YNVs do not contain saponins including diosgenin and dioscin known to mainly exert osteogenic activity of yams. Instead, the osteogenic activity of YNVs was revealed to be resulted from activation of the BMP-2/p-p38-dependent Runx2 pathway{and BMP2 can stimulate longitudinal bone growth}. As a result, YNVs promote longitudinal bone growth and mineral density of the tibia in the OVX-induced osteoporotic mice in vivo, and these results positively correlate the significant increases in osteoblast-related parameters. In addition, the orally administered YNVs were transported through the GI tract and absorbed through the small intestine. These results showed an excellent systemic biosafety determined by histological analysis and liver/kidney toxicity tests. Taken together, YNVs can serve as a safe and orally effective agent in the treatment of osteoporosis{and possibly growing taller pre-skeletal maturity}.”

Looking at slide 3 the Yam group looks significantly longer.

“Plants release exosome-like nanovesicles (PENs) containing miRNA, bioactive lipids, mRNAs, and proteins into their extracellular spaces, and these PENs serve as extracellular messengers that stimulate cell-cell communication and biological defense against pathological diseases. Recently, PENs have been widely explored as a drug delivery system in various therapeutics by isolating diverse plant sources including starchy roots and tubers, nuts and seeds, as well as fresh and dried plants”

“safe, biocompatible, and biodegradable without any negative effects on intestinal barrier function or other organ toxicities, but can also be prepared in large amounts.”

I couldn’t get this full study to check how significantly it influenced longitudinal bone growth.